52 research outputs found
The pharmacological regulation of cellular mitophagy
Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications
Oxygen uptake kinetics in trained adolescent females
Little evidence exists with regard to the effect that exercise training has upon oxygen uptake kinetics in adolescent females.
PURPOSE:
The aim of the study was to compare [Formula: see text] and muscle deoxygenation kinetics in a group of trained (Tr) and untrained (Utr) female adolescents.
METHOD:
Twelve trained (6.4 ± 0.9 years training, 10.3 ± 1.4 months per year training, 5.2 ± 2.0 h per week) adolescent female soccer players (age 14.6 ± 0.7 years) were compared to a group (n = 8) of recreationally active adolescent girls (age 15.1 ± 0.6 years) of similar maturity status. Subjects underwent two, 6-min exercise transitions at a workload equivalent to 80 % of lactate threshold from a 3-min baseline of 10 W. All subjects had a passive rest period of 1 h between each square-wave transition. Breath-by-breath oxygen uptake and muscle deoxygenation were measured throughout and were modelled via a mono-exponential decay with a delay relative to the start of exercise.
RESULT:
Peak [Formula: see text] was significantly (p < 0.05) greater in the Tr compared to the Utr (Tr: 43.2 ± 3.2 mL kg(-1 )min(-1) vs. Utr: 34.6 ± 4.0 mL kg(-1 )min(-1)). The [Formula: see text] time constant was significantly (p < 0.05) faster in the Tr compared to the Utr (Tr: 26.3 ± 6.9 s vs. Utr: 35.1 ± 11.5 s). There was no inter-group difference in the time constant for muscle deoxygenation kinetics (Tr: 8.5 ± 3.0 s vs. Utr: 12.4 ± 8.3 s); a large effect size, however, was demonstrated (-0.804).
CONCLUSION:
Exercise training and/or genetic self-selection results in faster kinetics in trained adolescent females. The faster [Formula: see text] kinetics seen in the trained group may result from enhanced muscle oxygen utilisation
Scoliosis in patients with Prader Willi Syndrome – comparisons of conservative and surgical treatment
In children with Prader Willi syndrome (PWS), besides growth hormone (GH) therapy, control of the food environment and regular exercise, surgical treatment of scoliosis deformities seems the treatment of choice, even though the risks of spinal surgery in this specific population is very high. Therefore the question arises as to whether the risks of spinal surgery outweigh the benefits in a condition, which bears significant risks per se. The purpose of this systematic review of the Pub Med literature was to find mid or long-term results of spinal fusion surgery in patients with PWS, and to present the conservative treatment in a case study of nine patients with this condition
Cocoa-flavanols enhance moderate-intensity pulmonary [Formula: see text] kinetics but not exercise tolerance in sedentary middle-aged adults.
INTRODUCTION: Cocoa flavanols (CF) may exert health benefits through their potent vasodilatory effects, which are perpetuated by elevations in nitric oxide (NO) bioavailability. These vasodilatory effects may contribute to improved delivery of blood and oxygen (O2) to exercising muscle. PURPOSE: Therefore, the objective of this study was to examine how CF supplementation impacts pulmonary O2 uptake ([Formula: see text]) kinetics and exercise tolerance in sedentary middle-aged adults. METHODS: We employed a double-blind cross-over, placebo-controlled design whereby 17 participants (11 male, 6 female; mean ± SD, 45 ± 6 years) randomly received either 7 days of daily CF (400 mg) or placebo (PL) supplementation. On day 7, participants completed a series of 'step' moderate- and severe-intensity exercise tests for the determination of [Formula: see text] kinetics. RESULTS: During moderate-intensity exercise, the time constant of the phase II [Formula: see text] kinetics ([Formula: see text]) was decreased by 15% in CF as compared to PL (mean ± SD; PL 40 ± 12 s vs. CF 34 ± 9 s, P = 0.019), with no differences in the amplitude of [Formula: see text] (A[Formula: see text]; PL 0.77 ± 0.32 l min-1 vs. CF 0.79 ± 0.34 l min-1, P = 0.263). However, during severe-intensity exercise, [Formula: see text], the amplitude of the slow component ([Formula: see text]) and exercise tolerance (PL 435 ± 58 s vs. CF 424 ± 47 s, P = 0.480) were unchanged between conditions. CONCLUSION: Our data show that acute CF supplementation enhanced [Formula: see text] kinetics during moderate-, but not severe-intensity exercise in middle-aged participants. These novel effects of CFs, in this demographic, may contribute to improved tolerance of moderate-activity physical activities, which appear commonly present in daily life. TRIAL REGISTRATION: Registered under ClinicalTrials.gov Identifier no. NCT04370353, 30/04/20 retrospectively registered
Increasing Dietary Fat Elicits Similar Changes in Fat Oxidation and Markers of Muscle Oxidative Capacity in Lean and Obese Humans
In lean humans, increasing dietary fat intake causes an increase in whole-body fat oxidation and changes in genes that regulate fat oxidation in skeletal muscle, but whether this occurs in obese humans is not known. We compared changes in whole-body fat oxidation and markers of muscle oxidative capacity differ in lean (LN) and obese (OB) adults exposed to a 2-day high-fat (HF) diet. Ten LN (BMI = 22.5±2.5 kg/m2, age = 30±8 yrs) and nine OB (BMI = 35.9±4.93 kg/m2, 38±5 yrs, Mean±SD) were studied in a room calorimeter for 24hr while consuming isocaloric low-fat (LF, 20% of energy) and HF (50% of energy) diets. A muscle biopsy was obtained the next morning following an overnight fast. 24h respiratory quotient (RQ) did not significantly differ between groups (LN: 0.91±0.01; OB: 0.92±0.01) during LF, and similarly decreased during HF in LN (0.86±0.01) and OB (0.85±0.01). The expression of pyruvate dehydrogenase kinase 4 (PDK4) and the fatty acid transporter CD36 increased in both LN and OB during HF. No other changes in mRNA or protein were observed. However, in both LN and OB, the amounts of acetylated peroxisome proliferator-activated receptor γ coactivator-1-α (PGC1-α) significantly decreased and phosphorylated 5-AMP-activated protein kinase (AMPK) significantly increased. In response to an isoenergetic increase in dietary fat, whole-body fat oxidation similarly increases in LN and OB, in association with a shift towards oxidative metabolism in skeletal muscle, suggesting that the ability to adapt to an acute increase in dietary fat is not impaired in obesity
The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes
Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease
Skeletal muscle SIRT1 and the genetics of metabolic health: therapeutic activation by pharmaceuticals and exercise
Cameron B Williams, Brendon J GurdSchool of Kinesiology and Health Studies, Queen&#39;s University, Kingston, Ontario, CanadaAbstract: Silent mating type information regulation 2 homolog 1 (SIRT1) is implicated in the control of skeletal muscle mitochondrial content and function through deacetylation of peroxisome proliferator-activated receptor &gamma; coactivator-1&alpha; (PGC-1&alpha;) and participation in the SIRT1/PGC-1&alpha; axis. The SIRT1/PGC-1&alpha; axis control of skeletal muscle mitochondrial biogenesis is an important therapeutic target for obesity and obesity-related metabolic dysfunction, as skeletal muscle mitochondrial dysfunction is implicated in the pathogenesis of multiple metabolic diseases. This review will establish the importance of the SIRT1/PGC-1&alpha; axis in the control of skeletal muscle mitochondrial biogenesis, and explore possible pharmacological and physiological interventions designed to activate SIRT1 and the SIRT1/PGC-1&alpha; axis in order to prevent and/or treat obesity and obesity-related metabolic disease. The current evidence supports a role for therapeutic activation of SIRT1 and the SIRT1/PGC-1&alpha; axis by both pharmaceuticals and exercise in the treatment and prevention of metabolic disease. Future research should be directed toward the feasibility of pharmaceutical activation of SIRT1 in humans and refining exercise prescriptions for optimal SIRT1 activation.Keywords: SIRT1, PGC-1a, resveratrol, obesity, metabolic disease, exercis
Whole blood transcriptomics and urinary metabolomics to define adaptive biochemical pathways of high-intensity exercise in 50-60 year old masters athletes
Exercise is beneficial for a variety of age-related disorders. However, the molecular mechanisms mediating the beneficial adaptations to exercise in older adults are not well understood. The aim of the current study was to utilize a dual approach to characterize the genetic and metabolic adaptive pathways altered by exercise in veteran athletes and age-matched untrained individuals. Two groups of 50-60 year old males: competitive cyclists (athletes, n = 9; VO2peak 59.1±5.2 ml·kg(-1)·min(-1); peak aerobic power 383±39 W) and untrained, minimally active individuals (controls, n = 8; VO2peak 35.9±9.7 ml·kg(-1)·min(-1); peak aerobic power 230±57 W) were examined. All participants completed an acute bout of submaximal endurance exercise, and blood and urine samples pre- and post-exercise were analyzed for gene expression and metabolic changes utilizing genome-wide DNA microarray analysis and NMR spectroscopy-based metabolomics, respectively. Our results indicate distinct differences in gene and metabolite expression involving energy metabolism, lipids, insulin signaling and cardiovascular function between the two groups. These findings may lead to new insights into beneficial signaling pathways of healthy aging and help identify surrogate markers for monitoring exercise and training load
- …