1,990 research outputs found

    Strong Coupling Phenomena on the Noncommutative Plane

    Get PDF
    We study strong coupling phenomena in U(1) gauge theory on the non-commutative plane. To do so, we make use of a T-dual description in terms of an N→∞N\to\infty limit of U(N) gauge theory on a commutative torus. The magnetic flux on this torus is taken to be m=N−1m=N-1, while the area scales like 1/N, keeping ΛQCD\Lambda_{QCD} fixed. With a few assumptions, we argue that the speed of high frequency light in pure non-commutative QED is modified in the non-commutative directions by the factor 1+ΛQCD4θ21 + \Lambda_{QCD}^4 \theta^2, where θ\theta is the non-commutative parameter. If charged flavours are included, there is an upper bound on the momentum of a photon propagating in the non-commutative directions, beyond which it is unstable against production of charged pairs. We also discuss a particular θ→∞\theta\to\infty limit of pure non-commutative QED which is T-dual to a more conventional N→∞N\to\infty limit with m/Nm/N fixed. In the non-commutative description, this limit gives rise to an exotic theory of open strings.Comment: 24 pages, latex, 2 figures, corrected typo in eqn 6.

    Temporal breakdown and Borel resummation in the complex Langevin method

    Full text link
    We reexamine the Parisi-Klauder conjecture for complex e^{i\theta/2} \phi^4 measures with a Wick rotation angle 0 <= \theta/2 < \pi/2 interpolating between Euclidean and Lorentzian signature. Our main result is that the asymptotics for short stochastic times t encapsulates information also about the equilibrium aspects. The moments evaluated with the complex measure and with the real measure defined by the stochastic Langevin equation have the same t -> 0 asymptotic expansion which is shown to be Borel summable. The Borel transform correctly reproduces the time dependent moments of the complex measure for all t, including their t -> infinity equilibrium values. On the other hand the results of a direct numerical simulation of the Langevin moments are found to disagree from the `correct' result for t larger than a finite t_c. The breakdown time t_c increases powerlike for decreasing strength of the noise's imaginary part but cannot be excluded to be finite for purely real noise. To ascertain the discrepancy we also compute the real equilibrium distribution for complex noise explicitly and verify that its moments differ from those obtained with the complex measure.Comment: title changed, results on parameter dependence of t_c added, exposition improved. 39 pages, 7 figure

    Low-Temperature Properties of Two-Dimensional Ideal Ferromagnets

    Full text link
    The manifestation of the spin-wave interaction in the low-temperature series of the partition function has been investigated extensively over more than seven decades in the case of the three-dimensional ferromagnet. Surprisingly, the same problem regarding ferromagnets in two spatial dimensions, to the best of our knowledge, has never been addressed in a systematic way so far. In the present paper the low-temperature properties of two-dimensional ideal ferromagnets are analyzed within the model-independent method of effective Lagrangians. The low-temperature expansion of the partition function is evaluated up to two-loop order and the general structure of this series is discussed, including the effect of a weak external magnetic field. Our results apply to two-dimensional ideal ferromagnets which exhibit a spontaneously broken spin rotation symmetry O(3) →\to O(2) and are defined on a square, honeycomb, triangular or Kagom\'e lattice. Remarkably, the spin-wave interaction only sets in at three-loop order. In particular, there is no interaction term of order T3T^3 in the low-temperature series for the free energy density. This is the analog of the statement that, in the case of three-dimensional ferromagnets, there is no interaction term of order T4T^4 in the free energy density. We also provide a careful discussion of the implications of the Mermin-Wagner theorem in the present context and thereby put our low-temperature expansions on safe grounds.Comment: 24 pages, 3 figure

    Wilson line correlators in two-dimensional noncommutative Yang-Mills theory

    Get PDF
    We study the correlator of two parallel Wilson lines in two-dimensional noncommutative Yang-Mills theory, following two different approaches. We first consider a perturbative expansion in the large-N limit and resum all planar diagrams. The second approach is non-perturbative: we exploit the Morita equivalence, mapping the two open lines on the noncommutative torus (which eventually gets decompacted) in two closed Wilson loops winding around the dual commutative torus. Planarity allows us to single out a suitable region of the variables involved, where a saddle-point approximation of the general Morita expression for the correlator can be performed. In this region the correlator nicely compares with the perturbative result, exhibiting an exponential increase with respect to the momentum p.Comment: 21 pages, 1 figure, typeset in JHEP style; some formulas corrected in Sect.3, one reference added, results unchange

    Spectral Flow on the Higgs Branch and AdS/CFT Duality

    Full text link
    We use AdS/CFT duality to study the large N_c limit of the meson spectrum on the Higgs branch of a strongly coupled, N=2 supersymmetric SU(N_c) gauge theory with N_f =2 fundamental hypermultiplets. In the dual supergravity description, the Higgs branch is described by SU(2) instanton configurations on D7-branes in an AdS background. We compute the spectral flow parameterized by the size of a single instanton. In the large N_c limit, there is a sense in which the flow from zero to infinite instanton size, or Higgs VEV, can be viewed as a closed loop. We show that this flow leads to a non-trivial rearrangement of the spectrum.Comment: v2; 16 pages, 3 figures, LaTeX + JHEP class, 3 refs added, accepted for publication by JHE

    Spontaneous breaking of continuous translational invariance

    Full text link
    Unbroken continuous translational invariance is often taken as a basic assumption in discussions of spontaneous symmetry breaking (SSB), which singles out SSB of translational invariance itself as an exceptional case. We present a framework which allows us to treat translational invariance on the same footing as other symmetries. It is shown that existing theorems on SSB can be straightforwardly extended to this general case. As a concrete application, we analyze the Nambu-Goldstone modes in a (ferromagnetic) supersolid. We prove on the ground of the general theorems that the Bogoliubov mode stemming from a spontaneously broken internal U(1) symmetry and the longitudinal phonon due to a crystalline order are distinct physical modes.Comment: 14 pages, 4 pdf/jpg figures, REVTeX 4.1; v2: section IV expanded, new appendix and references added, numerous other minor modifications throughout the tex

    Calibrated Surfaces and Supersymmetric Wilson Loops

    Full text link
    We study the dual gravity description of supersymmetric Wilson loops whose expectation value is unity. They are described by calibrated surfaces that end on the boundary of anti de-Sitter space and are pseudo-holomorphic with respect to an almost complex structure on an eight-dimensional slice of AdS_5 x S^5. The regularized area of these surfaces vanishes, in agreement with field theory non-renormalization theorems for the corresponding operators.Comment: 28 pages, 2 figure

    The Higgs System in and Beyond the Standard Model

    Full text link
    After the discovery of the Higgs boson particle on the 4th of July of 2012 at the Large Hadron Collider, sited at the european CERN laboratory, we are entering in a fascinating period for Particle Physics where both theorists and experimentalists are devoted to fully understand the features of this new particle and the possible consequences for High Energy Physics of the Higgs system both within and beyond the Standard Model of fundamental particle interactions. This paper is a summary of the lectures given at the third IDPASC school (Santiago de Compostela, Feb. 2013, Spain) addressed to PhD students, and contains a short introduction to the main basic aspects of the Higgs boson particle in and beyond the Standard Model.Comment: 62 pages, 31 figures, Lectures of the IDPASC School at Santiago de Compostela, Spain, February 201

    Noncommutative Electrodynamics

    Get PDF
    In this paper we define a causal Lorentz covariant noncommutative (NC) classical Electrodynamics. We obtain an explicit realization of the NC theory by solving perturbatively the Seiberg-Witten map. The action is polynomial in the field strenght FF, allowing to preserve both causality and Lorentz covariance. The general structure of the Lagrangian is studied, to all orders in the perturbative expansion in the NC parameter θ\theta. We show that monochromatic plane waves are solutions of the equations of motion to all orders. An iterative method has been developed to solve the equations of motion and has been applied to the study of the corrections to the superposition law and to the Coulomb law.Comment: 13 pages, 2 figures, one reference adde

    Open Wilson Lines and Group Theory of Noncommutative Yang-Mills Theory in Two Dimensions

    Get PDF
    The correlation functions of open Wilson line operators in two-dimensional Yang-Mills theory on the noncommutative torus are computed exactly. The correlators are expressed in two equivalent forms. An instanton expansion involves only topological numbers of Heisenberg modules and enables extraction of the weak-coupling limit of the gauge theory. A dual algebraic expansion involves only group theoretic quantities, winding numbers and translational zero modes, and enables analysis of the strong-coupling limit of the gauge theory and the high-momentum behaviour of open Wilson lines. The dual expressions can be interpreted physically as exact sums over contributions from virtual electric dipole quanta.Comment: 37 pages. References adde
    • …
    corecore