We study the correlator of two parallel Wilson lines in two-dimensional
noncommutative Yang-Mills theory, following two different approaches. We first
consider a perturbative expansion in the large-N limit and resum all planar
diagrams. The second approach is non-perturbative: we exploit the Morita
equivalence, mapping the two open lines on the noncommutative torus (which
eventually gets decompacted) in two closed Wilson loops winding around the dual
commutative torus. Planarity allows us to single out a suitable region of the
variables involved, where a saddle-point approximation of the general Morita
expression for the correlator can be performed. In this region the correlator
nicely compares with the perturbative result, exhibiting an exponential
increase with respect to the momentum p.Comment: 21 pages, 1 figure, typeset in JHEP style; some formulas corrected in
Sect.3, one reference added, results unchange