1,207 research outputs found

    Specific heat at constant volume in the thermodynamic model

    Full text link
    A thermodynamic model for multifragmentation which is frequently used appears to give very different values for specific heat at constant volume depending upon whether canonical or grand canonical ensemble is used. The cause for this discrepancy is analysed.Comment: Revtex, 7 pages including 4 figure

    Model of multifragmentation, Equation of State and phase transition

    Full text link
    We consider a soluble model of multifragmentation which is similar in spirit to many models which have been used to fit intermediate energy heavy ion collision data. We draw a p-V diagram for the model and compare with a p-V diagram obtained from a mean-field theory. We investigate the question of chemical instability in the multifragmentation model. Phase transitions in the model are discussed.Comment: Revtex, 9 pages including 6 figures: some change in the text and Fig.

    Raloxifene improves bone mechanical properties in mice previously treated with zoledronate

    Get PDF
    Bisphosphonates represent the gold-standard pharmaceutical agent for reducing fracture risk. Long-term treatment with bisphosphonates can result in tissue brittleness which in rare clinical cases manifests as atypical femoral fracture. Although this has led to an increasing call for bisphosphonate cessation, few studies have investigated therapeutic options for follow-up treatment. The goal of this study was to test the hypothesis that treatment with raloxifene, a drug that has cell-independent effects on bone mechanical material properties, could reverse the compromised mechanical properties that occur following zoledronate treatment. Skeletally mature male C57Bl/6J mice were treated with vehicle (VEH), zoledronate (ZOL), or ZOL followed by raloxifene (RAL; 2 different doses). At the conclusion of 8 weeks of treatment, femora were collected and assessed with microCT and mechanical testing. Trabecular BV/TV was significantly higher in all treated animals compared to VEH with both RAL groups having significantly higher BV/TV compared to ZOL (+21%). All three drug-treated groups had significantly more cortical bone area, higher cortical thickness, and greater moment of inertia at the femoral mid-diaphysis compared to VEH with no difference among the three treated groups. All three drug-treated groups had significantly higher ultimate load compared to VEH-treated animals (+14 to 18%). Both doses of RAL resulted in significantly higher displacement values compared to ZOL-treated animals (+25 to +50%). In conclusion, the current work shows beneficial effects of raloxifene in animals previously treated with zoledronate. The higher mechanical properties of raloxifene-treated animals, combined with similar cortical bone geometry compared to animals treated with zoledronate, suggest that the raloxifene treatment is enhancing mechanical material properties of the tissue

    Comparisons of Statistical Multifragmentation and Evaporation Models for Heavy Ion Collisions

    Get PDF
    The results from ten statistical multifragmentation models have been compared with each other using selected experimental observables. Even though details in any single observable may differ, the general trends among models are similar. Thus these models and similar ones are very good in providing important physics insights especially for general properties of the primary fragments and the multifragmentation process. Mean values and ratios of observables are also less sensitive to individual differences in the models. In addition to multifragmentation models, we have compared results from five commonly used evaporation codes. The fluctuations in isotope yield ratios are found to be a good indicator to evaluate the sequential decay implementation in the code. The systems and the observables studied here can be used as benchmarks for the development of statistical multifragmentation models and evaporation codes.Comment: To appear on Euorpean Physics Journal A as part of the Topical Volume "Dynamics and Thermodynamics with Nuclear Degrees of Freedo

    Isospin Effects in Nuclear Multifragmentation

    Full text link
    We develop an improved Statistical Multifragmentation Model that provides the capability to calculate calorimetric and isotopic observables with precision. With this new model we examine the influence of nuclear isospin on the fragment elemental and isotopic distributions. We show that the proposed improvements on the model are essential for studying isospin effects in nuclear multifragmentation. In particular, these calculations show that accurate comparisons to experimental data require that the nuclear masses, free energies and secondary decay must be handled with higher precision than many current models accord.Comment: 46 pages, 16 figure

    Absolutely anticommuting (anti-)BRST symmetry transformations for topologically massive Abelian gauge theory

    Full text link
    We demonstrate the existence of the nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for the four (3 + 1)-dimensional (4D) topologically massive Abelian U(1) gauge theory that is described by the coupled Lagrangian densities (which incorporate the celebrated (B \wedge F) term). The absolute anticommutativity of the (anti-) BRST symmetry transformations is ensured by the existence of a Curci-Ferrari type restriction that emerges from the superfield formalism as well as from the equations of motion that are derived from the above coupled Lagrangian densities. We show the invariance of the action from the point of view of the symmetry considerations as well as superfield formulation. We discuss, furthermore, the topological term within the framework of superfield formalism and provide the geometrical meaning of its invariance under the (anti-) BRST symmetry transformations.Comment: LaTeX file, 22 pages, journal versio

    Statistical Models of Nuclear Fragmentation

    Full text link
    A method is presented that allows exact calculations of fragment multiplicity distributions for a canonical ensemble of non-interacting clusters. Fragmentation properties are shown to depend on only a few parameters. Fragments are shown to be copiously produced above the transition temperature. At this transition temperature, the calculated multiplicity distributions broaden and become strongly super-Poissonian. This behavior is compared to predictions from a percolation model. A corresponding microcanonical formalism is also presented.Comment: 12 pages, 5 figure

    Mass Parameterizations and Predictions of Isotopic Observables

    Full text link
    We discuss the accuracy of mass models for extrapolating to very asymmetric nuclei and the impact of such extrapolations on the predictions of isotopic observables in multifragmentation. We obtain improved mass predictions by incorporating measured masses and extrapolating to unmeasured masses with a mass formula that includes surface symmetry and Coulomb terms. We find that using accurate masses has a significant impact on the predicted isotopic observables.Comment: 12 pages, 4 figure
    • …
    corecore