318 research outputs found

    Firms Growth Dynamics, Competition and Power Law Scaling

    Full text link
    We study the growth dynamics of the size of manufacturing firms considering competition and normal distribution of competency. We start with the fact that all components of the system struggle with each other for growth as happened in real competitive bussiness world. The detailed quantitative agreement of the theory with empirical results of firms growth based on a large economic database spanning over 20 years is good .Further we find that this basic law of competition leads approximately a power law scaling over a wide range of parameters. The empirical datas are in accordance with present theory rather than a simple power law.Comment: 10 pages, 8 figure

    A Case Study in Matching Service Descriptions to Implementations in an Existing System

    Full text link
    A number of companies are trying to migrate large monolithic software systems to Service Oriented Architectures. A common approach to do this is to first identify and describe desired services (i.e., create a model), and then to locate portions of code within the existing system that implement the described services. In this paper we describe a detailed case study we undertook to match a model to an open-source business application. We describe the systematic methodology we used, the results of the exercise, as well as several observations that throw light on the nature of this problem. We also suggest and validate heuristics that are likely to be useful in partially automating the process of matching service descriptions to implementations.Comment: 20 pages, 19 pdf figure

    Size limiting in Tsallis statistics

    Full text link
    Power law scaling is observed in many physical, biological and socio-economical complex systems and is now considered as an important property of these systems. In general, power law exists in the central part of the distribution. It has deviations from power law for very small and very large step sizes. Tsallis, through non-extensive thermodynamics, explained power law distribution in many cases including deviation from the power law, both for small and very large steps. In case of very large steps, they used heuristic crossover approach. In real systems, the size is limited and thus, the size limiting factor is important. In the present work, we present an alternative model in which we consider that the entropy factor q decreases with step size due to the softening of long range interactions or memory. This explains the deviation of power law for very large step sizes. Finally, we apply this model for distribution of citation index of scientists and examination scores and are able to explain the entire distribution including deviations from power law.Comment: 22 pages, 8 figure

    Atomic Force Microscopy micro-rheology reveals large structural inhomogeneities in single cell-nuclei

    Get PDF
    During growth, differentiation and migration of cells, the nucleus changes size and shape, while encountering forces generated by the cell itself and its environment. Although there is increasing evidence that such mechanical signals are employed to control gene expression, it remains unclear how mechanical forces are transduced through the nucleus. To this end, we have measured the compliance of nuclei by applying oscillatory strains between 1 and 700 Hz to individual nuclei of multiple mammalian cell-lines that were compressed between two plates. The quantitative response varied with more than one order of magnitude and scaled with the size of the nucleus. Surprisingly, the qualitative behaviour was conserved among different cell-lines: all nuclei showed a softer and more viscous response towards the periphery, suggesting a reduced degree of crosslinking of the chromatin. This may be an important feature to regulate transcription via mechano-transduction in this most active and dynamic region of the nucleus

    Solidification behavior of intensively sheared hypoeutectic Al-Si alloy liquid

    Get PDF
    The official published version of this article can be found at the link below.The effect of the processing temperature on the microstructural and mechanical properties of Al-Si (hypoeutectic) alloy solidified from intensively sheared liquid metal has been investigated systematically. Intensive shearing gives a significant refinement in grain size and intermetallic particle size. It also is observed that the morphology of intermetallics, defect bands, and microscopic defects in high-pressure die cast components are affected by intensive shearing the liquid metal. We attempt to discuss the possible mechanism for these effects.Funded by the EPSRC

    Processing of ultrafine-size particulate metal matrix composites by advanced shear technology

    Get PDF
    Copyright @ 2009 ASM International. This paper was published in Metallurgical & Materials Transactions A 40A(3) and is made available as an electronic reprint with the permission of ASM International. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplications of any material in this paper for a fee or for commercial purposes, or modification of the content of this paper are prohibited.Lack of efficient mixing technology to achieve a uniform distribution of fine-size reinforcement within the matrix and the high cost of producing components have hindered the widespread adaptation of particulate metal matrix composites (PMMCs) for engineering applications. A new rheo-processing method, the melt-conditioning high-pressure die-cast (MC-HPDC) process, has been developed for manufacturing near-net-shape components of high integrity. The MC-HPDC process adapts the well-established high shear dispersive mixing action of a twin-screw mechanism to the task of overcoming the cohesive force of the agglomerates under a high shear rate and high intensity of turbulence. This is followed by direct shaping of the slurry into near-net-shape components using an existing cold-chamber die-casting process. The results indicate that the MC-HPDC samples have a uniform distribution of ultrafine-sized SiC particles throughout the entire sample in the as-cast condition. Compared to those produced by conventional high-pressure die casting (HPDC), MC-HPDC samples have a much improved tensile strength and ductility.EP-SR
    corecore