335 research outputs found

    A Characterization of Wireless Network Interface Card Active Scanning Algorithms

    Get PDF
    In this thesis, we characterize the proprietary active scanning algorithm of several wireless network interface cards. Our experiments are the first of its kind to observe the complete scanning process as the wireless network interface cards probe all the channels in the 2.4GHz spectrum. We discuss the: 1) correlation of channel popularity during active scanning and access point channel deployment popularity; 2) number of probe request frames statistics on each channel; 3) channel probe order; and 4) dwell time. The knowledge gained from characterizing wireless network interface cards is important for the following reasons: 1) it helps one understand how active scanning is implemented in different hardware and software; 2) it can be useful in identifying a wireless rogue host; 3) it can help implement Active Scanning in network simulators; and 4) it can radically influence research in the familiar fields like link-layer handovers and effective deployment of access points

    Functional colloidal surface assemblies: Classical optics meets template-assisted self-assembly

    Get PDF
    Abstract: When noble metals particles are synthesized with progressively smaller dimensions, strikingly novel optical properties arise. For nanoscale particles, collective disturbances of the electron density known as localized surface plasmons resonances can arise, and these resonances are utilized in a variety of applications ranging from surface-enhanced molecular spectroscopy and sensing to photothermal cancer therapy to plasmon-driven photochemistry. Central to all of these studies is the plasmon’s remarkable ability to process light, capturing and converting it into intense near fields, heat, and even energetic carriers at the nanoscale. In the past decade, we have witnessed major advances in plasmonics which is directly linked with the much broader field of (colloidal) nanotechnology. These breakthroughs span from plasmon lasing and waveguides, plasmonic photochemistry and solar cells to active plasmonics, plasmonics nanocomposites and semiconductor plasmons. All the above-mentioned phenomena rely on precise spatial placement and distinct control over the dimensions and orientation of the individual plasmonic building blocks within complex one-, two- or three-dimensional complex arrangements. For the nanofabrication of metal nanostructures at surfaces, most often lithographic approaches, e.g. e-beam lithography or ion-beam milling are generally applied, due to their versatility and precision. However, these techniques come along with several drawbacks such as limited scalability, limited resolution, limited compatibility with silicon manufacturing techniques, damping effects due to the polycrystalline nature of the metal nanostructures and low sample throughput. Thus, there is a great demand for alternative approaches for the fabrication of metal nanostructures to overcome the above-mentioned limitations. But why colloids? True three-dimensionality, lower damping, high quality modes due to mono-dispersity, and the absence of grain boundaries make the colloidal assembly an especially competitive method for high quality large-scale fabrication. On top of that, colloids provide a versatile platform in terms of size, shape, composition and surface modification and dispersion media. 540The combination of directed self-assembly and laser interference lithography is a versatile admixture of bottom-up and top-down approaches that represents a compelling alternative to commonly used nanofabrication methods. The objective of this thesis is to focus on large area fabrication of emergent spectroscopic properties with high structural and optical quality via colloidal self-assembly. We focus on synergy between optical and plasmonic effects such as: (i) coupling between localized surface plasmon resonance and Bragg diffraction leading to surface lattice resonance; (ii) strong light matter interaction between guided mode resonance and collective plasmonic chain modes leading to hybrid guided plasmon modes, which can further be used to boost the hot-electron efficiency in a semiconducting material; (iii) similarly, bilayer nanoparticle chains leading to chiro-optical effects. Following this scope, this thesis introduces a real-time tuning of such exclusive plasmonic-photonic (hybrid) modes via flexible template fabrication. Mechanical stimuli such as tensile strain facilitate the dynamic tuning of surface lattice resonance and chiro-optical effects respectively. This expands the scope to curb the rigidity in optical systems and ease the integration of such systems with flexible electronics or circuits.:Contents Abstract Kurzfassung Abbreviations 1. Introduction and scope of the thesis 1.1. Introduction 1.1.1. Classical optics concepts 1.1.2. Top down fabrication methods and their challenges 1.1.3. Template-assisted self-assembly 1.1.4. Functional colloidal surface assemblies 1.2. Scope of the thesis 2. Results and Discussion 2.1. Mechanotunable Surface Lattice Resonances in the Visible Optical Range by Soft Lithography Templates and Directed Self-Assembly 2.1.1. Fabrication of flexible 2D plasmonic lattice 2.1.2. Investigation of the influence of particle size distribution on SLR quality 2.1.3. Band diagram analysis of 2D plasmonic lattice 2.1.4. Strain induced tuning of SLR 2.1.5. SEM and force transfer analysis in 2D plasmonic lattice under various strain 2.2. Hybridized Guided-Mode Resonances via Colloidal Plasmonic Self-Assembled Grating 2.2.1. Fabrication of hybrid opto-plasmonic structure via template assisted self-assembly 2.2.2. Comparison of optical band diagram of three (plasmonic, photonic and hybrid) different structures in TE and TM modes 2.2.3. Simulative comparison of optical properties of hybrid opto-plasmonic NP chains with a grating of metallic gold bars 2.2.4. Effect of cover index variation with water as a cover medium 2.3. Hot electron generation via guided hybrid modes 2.3.1. Fabrication of the hybrid GMR structure via LIL and lift-off process 2.3.2. Spectroscopic and simulative analysis of hybrid opto-plasmonic structures of different periodicities 2.3.3. Comparative study of photocurrent generation in different plasmonic structures 2.3.4. Polarization dependent response at higher wavelength 2.3.5. Directed self-assembly of gold nanoparticles within grating channels of a dielectric GMR structure supported by titanium dioxide film 2.4. Active Chiral Plasmonics Based on Geometrical Reconfiguration 2.4.1. Chiral 3D assemblies by macroscopic stacking of achiral chain substrates 3. Conclusion 4. Zusammenfassung 5. Bibliography 6. Appendix 6.1. laser interference lithography 6.2. Soft molding 6.3. Determine fill factor of plasmonic lattice 6.4. 2D plasmonic lattice of Au_BSA under strain 6.5. Characterizing order inside a 2D lattice 6.6. Template-assisted colloidal self-assembly 6.7. Out of plane lattice resonance in 1D and 2D lattices 6.8. E-Field distribution at out of plane SLR mode for 1D lattices of various periodicity with AOI 20° 6.9. Refractive index of PDMS and UV-PDMS 6.10. Refractive index measurement for sensing 6.11. Optical constants of TiO2, ma-N 405 photoresist and glass substrate measured from spectroscopic ellipsometry Acknowledgement/ Danksagung Erklärung & Versicherung List of Publication

    Dynamic Motion Planning for Aerial Surveillance on a Fixed-Wing UAV

    Full text link
    We present an efficient path planning algorithm for an Unmanned Aerial Vehicle surveying a cluttered urban landscape. A special emphasis is on maximizing area surveyed while adhering to constraints of the UAV and partially known and updating environment. A Voronoi bias is introduced in the probabilistic roadmap building phase to identify certain critical milestones for maximal surveillance of the search space. A kinematically feasible but coarse tour connecting these milestones is generated by the global path planner. A local path planner then generates smooth motion primitives between consecutive nodes of the global path based on UAV as a Dubins vehicle and taking into account any impending obstacles. A Markov Decision Process (MDP) models the control policy for the UAV and determines the optimal action to be undertaken for evading the obstacles in the vicinity with minimal deviation from current path. The efficacy of the proposed algorithm is evaluated in an updating simulation environment with dynamic and static obstacles.Comment: Accepted at International Conference on Unmanned Aircraft Systems 201

    Assessment of antioxidant activity of Ocimum sanctum in healing of thermal burn wound with and without supportive treatment of silver sulfadiazine in rabbits

    Get PDF
    Background: Burns remain a major public health issue all over the world, especially in developing countries. Pseudomonas aeruginosa is a major cause of infection and death in patients with severe burns.  So, there is a need to develop drugs which will decrease complications and prevent infections more effectively than the presently used drugs.Methods: Ocimum sanctum, ointment silver sulfadiazine and 24 Rabbits were used in this study. Animals were acclimatized and divided randomly into 04 groups of 06 animals each. After producing partial thickness burn wound ointment silver sulfadiazine was applied daily on the burn wound and Ocimum sanctum was administered orally once daily. Healing was assessed by wound contraction and Oxidative stress and Antioxidant Activity were measured by Malondialdehyde and Superoxide dismutase respectively. Results were analysed by student’s ‘t’ test, one way ANOVA followed by Dennett’s test. P values <0.05 were considered statistically significant.Results: At the end of treatment (After 28th Day) Group treated with ointment silver sulfadiazine+Ocimum sanctum showed  maximum Percentage of wound contraction (93.17±4.34), maximum decrease of MDA percentage (0.30±0.02 nmol/ml) and maximum increase of SOD percentage (0.0045±0.0002 IU/gm of Hb).Conclusions: Most effective treatment for burn wound healing in this study was ointment silver sulfadiazine+Ocimum sanctum

    Signatures of Chaos in the Dynamics of Quantum Discord

    Get PDF
    We identify signatures of chaos in the dynamics of discord in a multiqubit system collectively modelled as a quantum kicked top. The evolution of discord between any two qubits is quasiperiodic in regular regions, while in chaotic regions the quasiperiodicity is lost. As the initial wave function is varied from the regular regions to the chaotic sea, a contour plot of the time-averaged discord remarkably reproduces the structures of the classical stroboscopic map. We also find surprisingly opposite behavior of two-qubit discord versus entanglement of the two qubits as measured by the concurrence. Our results provide evidence of signatures of chaos in dynamically generated discord

    Low Cost Device for Charging Mobile Phone using Another Smartphone

    Get PDF
    Mobile has been and will always remain one of the best companions for any human being. Mobile phones are considered as the live example of the advancement in technology on a daily basis. This era is marked by our complete dependence on this technology. The growing technology has introduced mobile phone, which plays an important role in communication. Since mobile phones have been made to be with the user all day and to carry out all the basis and high-performance task as per the demand of the user, the batteries need to be charged multiple times during a day. This imposes a burden on the user to carry a power bank while travelling; at times it becomes difficult if the power bank battery also drains out. This paper presents a small technique which may reduce this problem. The major components of the design are a capacitor of 2200 μF at 5.63 V and LED 1.5 V. The experimental data shows that the charging level of a mobile battery of 2100 mAh can be enhanced from 10-19 % in 35 minutes by consuming only 10% of the total energy of the other smart phone of battery 4000 mAh. Another experimental data shows that the charging level of a mobile battery of 2000 mAh can be enhanced from 14-37 % in 60 minutes by consuming only 20% of the total energy of the other smart phone of battery 4000 mAh. This low cost and simple designed USB On-the-Go (OTG) extension can now replace the necessity of carrying a power bank while travelling, which is expensive as compared to the above proposed technique as well.Citation: Gupta, V., Aggarwal, V., Sharma, K., and Sharma, N. (2018). Low Cost Device for Charging Mobile Phone using Another Smartphone. Trends in Renewable Energy, 4, 77-82. DOI: 10.17737/tre.2018.4.3.005

    Selection of Gate Dielectrics for ZnO Based Thin-Film Transistors

    Get PDF
    The bulk of semiconductor technology has been based on silicon till today. But silicon has its own limitations. It is not transparent to visible light and hence it cannot be used in certain applications. ZnO is a material which is transparent to visible light. In this paper, we compare the electrical performance of ZnO Thin film Transistors using different gate insulators. Certain performance indices and material indices were considered as the selection criteria for electrical performance. A methodology known as Ashby’s approach was adopted to find out the best gate insulators and based on this methodology various charts were plotted to compare different properties of competing materials. This work concludes that Y2O3 is the best insulator followed by ZrO2 and HfO2
    • …
    corecore