127 research outputs found

    ON THE FURTHER STUDIES OF SUITABLE STORM-SCALE 3DVAR DATA ASSIMILATION FOR THE PREDICTION OF TORNADIC THUNDERSTORMS

    Get PDF
    Storm-scale 3DVAR data assimilation and NWP for the prediction of tornadic supercell thunderstorms still faces many challenges. Some fundamental issues are still not thoroughly (or explicitly) investigated. To name a few: what data field(s) plays the most important role in storm-scale data assimilation? How much information is required to get a quality data assimilation results? What is the model's first response to different types of observations? How will the neglecting of beam broadening and earth curvature factors in radar forward observation operator affect the data assimilation results? How to build a more dynamic consistent analysis by imposing weak constraints in cost function that is aimed to couple different model variables? This dissertation tries to address some of these questions.The impacts of different data fields are firstly investigated. OSS Experiments are conducted under a simplified 3DVAR framework. The model's first responses at storm scale to the assimilation of different types of observations are thoroughly examined. It is also demonstrated that the horizontal wind fields have the greatest impact on the storm-scale data assimilation. In addition to the horizontal wind fields, extra observations from other model variables will improve the quality of data assimilation. Among these "other model variables", the water vapor field exerts the largest impact. A follow-on real case study confirms the important role of wind fields.The impact of beam broadening or earth curvature on storm-scale 3DVAR data assimilation is also examined using OSS experiments. It is shown that the effect of beam broadening can be generally overlooked in storm-scale radar data assimilation without noticeable degradation of assimilation results. However, the effect of earth curvature can only be neglected when the radar is near the storm (within 60 km as demonstrated by this study). The impact of refractive index gradient is also tested and shown to be small.To help boost dynamic consistency among model variables, the storm-scale diagnostic pressure equation is incorporated into the storm-scale 3DVAR cost function in the form of a weak constraint. The impact of the constraint has been examined by applying it to case studies of one idealized tornadic supercell thunderstorm and two real-world tornadic supercell thunderstorms. It is demonstrated in the idealized case study that at single analysis step, the use of the constraint can help slightly improve the analysis of wind fields and pressure field. After a given period of intermittent data assimilation, the use of the constraint can evidently improve the quality of the data assimilation results. For the 8 May 2003 OKC tornadic supercell thunderstorm case, it is shown that the use of the constraint help improve the forecast in term of the general evolution and the mesocyclone rotation of the major tornadic supercell thunderstorm. For the 5 May 2007 Greensburg tornadic supercell thunderstorm case, two different assimilation configurations are introduced to examine the impact of the constraint under different situations. It is shown that assimilating wind data alone produces reasonable forecast and the use of the diagnostic pressure equation constraint evidently improve the forecast. When assimilating reflectivity data in addition to wind data, the impact of the constraint is also positive. Overall, it is demonstrated that the constraint can improve the quality of radar data assimilation and the subsequent forecast

    Impact of a Diagnostic Pressure Equation Constraint on Tornadic Supercell Thunderstorm Forecasts Initialized Using 3DVAR Radar Data Assimilation

    Get PDF
    A diagnostic pressure equation constraint has been incorporated into a storm-scale three-dimensional variational (3DVAR) data assimilation system. This diagnostic pressure equation constraint (DPEC) is aimed to improve dynamic consistency among different model variables so as to produce better data assimilation results and improve the subsequent forecasts. Ge et al. (2012) described the development of DPEC and testing of it with idealized experiments. DPEC was also applied to a real supercell case, but only radial velocity was assimilated. In this paper, DPEC is further applied to two real tornadic supercell thunderstorm cases, where both radial velocity and radar reflectivity data are assimilated. The impact of DPEC on radar data assimilation is examined mainly based on the storm forecasts. It is found that the experiments using DPEC generally predict higher low-level vertical vorticity than the experiments not using DPEC near the time of observed tornadoes. Therefore, it is concluded that the use of DPEC improves the forecast of mesocyclone rotation within supercell thunderstorms. The experiments using different weighting coefficients generate similar results. This suggests that DPEC is not very sensitive to the weighting coefficients

    Towards Balanced Alignment: Modal-Enhanced Semantic Modeling for Video Moment Retrieval

    Full text link
    Video Moment Retrieval (VMR) aims to retrieve temporal segments in untrimmed videos corresponding to a given language query by constructing cross-modal alignment strategies. However, these existing strategies are often sub-optimal since they ignore the modality imbalance problem, \textit{i.e.}, the semantic richness inherent in videos far exceeds that of a given limited-length sentence. Therefore, in pursuit of better alignment, a natural idea is enhancing the video modality to filter out query-irrelevant semantics, and enhancing the text modality to capture more segment-relevant knowledge. In this paper, we introduce Modal-Enhanced Semantic Modeling (MESM), a novel framework for more balanced alignment through enhancing features at two levels. First, we enhance the video modality at the frame-word level through word reconstruction. This strategy emphasizes the portions associated with query words in frame-level features while suppressing irrelevant parts. Therefore, the enhanced video contains less redundant semantics and is more balanced with the textual modality. Second, we enhance the textual modality at the segment-sentence level by learning complementary knowledge from context sentences and ground-truth segments. With the knowledge added to the query, the textual modality thus maintains more meaningful semantics and is more balanced with the video modality. By implementing two levels of MESM, the semantic information from both modalities is more balanced to align, thereby bridging the modality gap. Experiments on three widely used benchmarks, including the out-of-distribution settings, show that the proposed framework achieves a new start-of-the-art performance with notable generalization ability (e.g., 4.42% and 7.69% average gains of [email protected] on Charades-STA and Charades-CG). The code will be available at https://github.com/lntzm/MESM.Comment: Accepted to AAAI 202

    Experimental investigations on the correlations between the structure and thermal-electrochemical properties of over-discharged ternary/Si-C power batteries

    Get PDF
    © 2021 John Wiley & Sons Ltd. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1002/er.7274The thermal safety of power lithium-ion batteries(LIBs) has seriously affected the booming development of electric vehicles (EVs). Especially, owing to the requirement of high energy density, thermal runaway (TR) easily occurs in LIBs, resulting in a higher heat generation rate. Over-discharging is recognized as a common cause for TR. In the present research, the correlations between the structure and thermal-electrochemical properties of an over-discharged ternary/Si-C battery at room and high temperatures were investigated. The heat generation mechanisms of the batteries due to the maximum surface temperature and peak temperature difference variations during fast charging and discharging processes were investigated. Moreover, the electrochemical performances parameters of the batteries, such as voltage changing trend, discharge time, discharge capacity, internal resistance, electrochemical impedance spectroscopy (EIS) spectra, were analyzed. When the battery was discharged at 2.0C and 55°C, its maximum temperature and highest temperature difference reached 91.34°C and 13.24°C, respectively, finally resulting in a sharp decline in electrochemical performance. Furthermore, the root reasons for performance degradation and heat generation intensification of the over-discharged battery (ODB) were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The cause of the aforementioned phenomenon is due to irreversible damage of the electrode materials. This research not only reveals the relevant relationship between the thermal behavior and the microscopic structure of the over-discharged ternary/Si-C battery under various temperature conditions but also provides valuable insights for improving the safety of LIBs modules even packs.Peer reviewe

    Exploring the optimal impact force for chronic skeletal muscle injury induced by drop-mass technique in rats

    Get PDF
    Introduction: Skeletal muscle injuries are widespread in sports, traffic accidents and natural disasters and some of them with poor prognoses can lead to chronic skeletal muscle damage in the clinic. We induced a chronic skeletal muscle injury by controlling time and contusion force using an acute blunt trauma model that will help us better comprehend the pathological features of chronic skeletal muscle injury.Methods: Several levels of injury were induced by repeatedly striking in 5, 10, and 15 times the gastrocnemius muscle from the same height with 200 g weights. After injury, the markers of muscle injury were assessed at 2 and 4 weeks by serum elisa. Electron microscopy, histologic and immunohistochemical staining, and mRNA analysis were used to evaluate the ultrastructure, inflammation, extracellular matrix decomposition, and anabolism of injured muscle in 2 and 4 weeks.Results: All three different kinetic energies can result in skeletal muscle injuries. However, the injured skeletal muscles of rats in each group could not recover within 2 weeks. After 4 weeks, tissue self-repair and reconstruction caused the damage induced by 5 J kinetic energy to almost return to normal. In contrast, damage induced by 10 J kinetic energy displayed slight improvement compared to that at 2 weeks. Despite this, collagen fibers on the surface of the tissue were disorganized, directionally ambiguous, and intertwined with each other. Myofilaments within the tissue were also arranged disorderly, with blurry and broken Z-lines. Damage caused by 15 J kinetic energy was the most severe and displayed no improvements at 4 weeks compared to 2 weeks. At 4 weeks, IL-1β, IL-6, Collagen I, and Collagen III, MMP2 expressions in the 10 J group were lower than those at 2 weeks, showing a tendency towards injury stabilization.Conclusion: After 4 weeks of remodeling and repair, the acute skeletal muscle injury model induced by 10 J kinetic energy can stabilize pathological manifestations, inflammatory expression, and extracellular matrix synthesis and catabolism, making it an appropriate model for studying chronic skeletal muscle injuries caused by acute injury

    Morphology and transverse alignment of the patella have no effect on knee gait characteristics in healthy Chinese adults over the age of 40 years

    Get PDF
    Background: The influence of patella morphology and horizontal alignment on knee joint kinematics and kinetics remains uncertain. This study aimed to assess patella morphology and transverse alignment in relation to knee kinetics and kinematics in individuals without knee conditions. A secondary objective was to investigate the impact of femur and tibia alignment and shape on knee gait within this population.Patients and methods: We conducted a prospective collection of data, including full-leg anteroposterior and skyline X-ray views and three-dimensional gait data, from a cohort comprising 54 healthy individuals aged 40 years and older. Our study involved correlation and logistic regression analyses to examine the influence of patella, femur, and tibia morphology and alignment on knee gait.Results: The patellar tilt angle or the patella index did not show any significant relationships with different aspects of gait in the knee joint, such as velocity, angle, or moment (p > 0.05, respectively). Using multivariate logistic regression analysis, we found that the tibiofemoral angle and the Q angle both had a significant effect on the adduction angle (OR = 1.330, 95%CI 1.033–1.711, p = 0.027; OR = 0.475, 95%CI 0.285–0.792, p = 0.04; respectively). The primary variable influencing the knee adduction moment was the tibiofemoral angle (OR = 1.526, 95% CI 1.125–2.069, p = 0.007).Conclusion: In healthy Chinese individuals aged over 40, patella morphology and transverse alignment do not impact knee gait. However, the femoral-tibial angle has a big impact on the knee adduction moment

    Reduced Body Weight and Increased Energy Expenditure in Transgenic Mice Over-Expressing Soluble Leptin Receptor

    Get PDF
    studies have shown that OBRe expression is inversely correlated to body weight and leptin levels. However, it is not clear whether OBRe plays an active role, either in collaboration with leptin or independently, in the maintenance of body weight.To investigate the function of OBRe in the regulation of energy homeostasis, we generated transgenic mice that express OBRe under the control of human serum amyloid P (hSAP) component gene promoter. The transgene led to approximately doubling of OBRe in circulation in the transgenic mice than in wild type control mice. Transgenic mice exhibited lower body weight at 4 weeks of age, and slower rate of weight gain when compared with control mice. Furthermore, transgenic mice had lower body fat content. Indirect calorimetry revealed that transgenic mice had reduced food intake, increased basal metabolic rate, and increased lipid oxidation, which could account for the differences in body weight and body fat content. Transgenic mice also showed higher total circulating leptin, with the majority of it being in the bound form, while the amount of free leptin is comparable between transgenic and control mice.These results are consistent with the role of OBRe as a leptin binding protein in regulating leptin's bioavailability and activity

    Potential Geographic Distribution of Brown Marmorated Stink Bug Invasion (Halyomorpha halys)

    Get PDF
    BACKGROUND: The Brown Marmorated Stink Bug (BMSB), Halyomorpha halys (Stål) (Hemiptera: Pentatomidae), native to Asia, is becoming an invasive species with a rapidly expanding range in North America and Europe. In the US, it is a household pest and also caused unprecedented damage to agriculture crops. Exploring its climatic limits and estimating its potential geographic distribution can provide critical information for management strategies. METHODOLOGY/PRINCIPALS: We used direct climate comparisons to explore the climatic niche occupied by native and invasive populations of BMSB. Ecological niche modelings based on the native range were used to anticipate the potential distribution of BMSB worldwide. Conversely, niche models based on the introduced range were used to locate the original invasive propagates in Asia. Areas with high invasion potential were identified by two niche modeling algorithms (i.e., Maxent and GARP). CONCLUSIONS/SIGNIFICANCE: Reduced dimensionality of environmental space improves native model transferability in the invade area. Projecting models from invasive population back to native distributional areas offers valuable information on the potential source regions of the invasive populations. Our models anticipated successfully the current disjunct distribution of BMSB in the US. The original propagates are hypothesized to have come from northern Japan or western Korea. High climate suitable areas at risk of invasion include latitudes between 30°-50° including northern Europe, northeastern North America, southern Australia and the North Island of New Zealand. Angola in Africa and Uruguay in South America also showed high climate suitability
    corecore