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Abstract 

Storm-scale 3DVAR data assimilation and NWP for the prediction of tornadic 

supercell thunderstorms still faces many challenges. Some fundamental issues are still not 

thoroughly (or explicitly) investigated. To name a few: what data field(s) plays the most 

important role in storm-scale data assimilation? How much information is required to get 

a quality data assimilation results? What is the model’s first response to different types of 

observations? How will the neglecting of beam broadening and earth curvature factors in 

radar forward observation operator affect the data assimilation results? How to build a 

more dynamic consistent analysis by imposing weak constraints in cost function that is 

aimed to couple different model variables? This dissertation tries to address some of 

these questions. 

The impacts of different data fields are firstly investigated. OSS Experiments are 

conducted under a simplified 3DVAR framework. The model’s first responses at storm 

scale to the assimilation of different types of observations are thoroughly examined. It is 

also demonstrated that the horizontal wind fields have the greatest impact on the storm-

scale data assimilation. In addition to the horizontal wind fields, extra observations from 

other model variables will improve the quality of data assimilation. Among these “other 

model variables”, the water vapor field exerts the largest impact. A follow-on real case 

study confirms the important role of wind fields. 

The impact of beam broadening or earth curvature on storm-scale 3DVAR data 

assimilation is also examined using OSS experiments. It is shown that the effect of beam 

broadening can be generally overlooked in storm-scale radar data assimilation without 

noticeable degradation of assimilation results. However, the effect of earth curvature can 
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only be neglected when the radar is near the storm (within 60 km as demonstrated by this 

study). The impact of refractive index gradient is also tested and shown to be small. 

To help boost dynamic consistency among model variables, the storm-scale 

diagnostic pressure equation is incorporated into the storm-scale 3DVAR cost function in 

the form of a weak constraint. The impact of the constraint has been examined by 

applying it to case studies of one idealized tornadic supercell thunderstorm and two real-

world tornadic supercell thunderstorms. It is demonstrated in the idealized case study that 

at single analysis step, the use of the constraint can help slightly improve the analysis of 

wind fields and pressure field. After a given period of intermittent data assimilation, the 

use of the constraint can evidently improve the quality of the data assimilation results. 

For the 8 May 2003 OKC tornadic supercell thunderstorm case, it is shown that the use of 

the constraint help improve the forecast in term of the general evolution and the 

mesocyclone rotation of the major tornadic supercell thunderstorm. For the 5 May 2007 

Greensburg tornadic supercell thunderstorm case, two different assimilation 

configurations are introduced to examine the impact of the constraint under different 

situations. It is shown that assimilating wind data alone produces reasonable forecast and 

the use of the diagnostic pressure equation constraint evidently improve the forecast. 

When assimilating reflectivity data in addition to wind data, the impact of the constraint 

is also positive. Overall, it is demonstrated that the constraint can improve the quality of 

radar data assimilation and the subsequent forecast. 
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Chapter 1 Introduction and Overview 

1.1 Background and motivation 

The convective thunderstorm is one of hazardous weather that endangers people’s 

life and properties. The implement of storm-scale numerical weather prediction (NWP) 

model is a great advance in improving the forecast of convective thunderstorms 

(Droegemeier 1997). The NWP is an initial-boundary value problem, therefore, providing 

an accurate initial condition for the storm-scale NWP model becomes a great concern 

(using appropriate boundary conditions is another concern but beyond the scope of this 

research).  

There are generally two ways to get a better initial condition. One is to develop and 

improve NWP models and data assimilation techniques (such as 3DVAR, 4DVAR, and 

EnKF etc.) to make best use of available observations and background information. The 

other is to design and implement more high resolution observing systems to provide more 

types of observations. Currently, one component of three-dimensional wind fields can be 

observed by single Doppler radar. The horizontal wind fields can be retrieved from 

multiple NEXRAD radar velocity observations to certain accuracy if a good multiple 

radar coverage can be obtained. The rainfall information (rain water mixing ratio, snow 

water mixing ratio, hail mixing ratio) can be assumed to be derived from radar observed 

reflectivity (including dual-pol information), satellite imagery data and surface cloud 

reports. The storm-scale observing systems for other model variables are being advanced 

by the community. In the future, it will be expected that the vertical velocity field can be 

observed in high resolution by spaceborne/airborne high frequency Doppler radar. The 
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water vapor field can be derived in high resolution from observations by next generation 

GOES (Geostationary Operational Environmental Satellite), observations by dense 

ground-based GPS receiver network and radar refractivity observations. The temperature 

field can also be profiled in high resolution by next generation GOES. 

As more and more data assimilation and observing system studies are devoted into 

this area, some general questions are raised naturally across the community: What are the 

impacts of different data fields for successful data assimilation and the following 

forecasts? How much observation information is required to get a quality initial condition? 

Will a more frequent assimilation (rapid update) naturally yield good results? How a 

storm-scale NWP model responds to the ingestion of different types of observations? 

Many studies (e.g. Weygandt et al. 1999; Park and Droegemeier 2000; Weygandt et al. 

2002b, 2002a; Sun 2005a; Tong and Xue 2005; Hu et al. 2006a; Hu et al. 2006b; 

Nascimento and Droegemeier 2006; Hu and Xue 2007; Fabry 2010; Fabry and Sun 2010) 

have been made to examine the impact of different data fields on storm-scale NWP. 

However, because of the different context and different focus, there are some differences 

and conflicts among the conclusions of these studies (details will be provided in Chapter 

2). It calls for further studies on this area. On the other hand, the model’s first response to 

the ingestion of different types of observations at storm scale is still not thoroughly 

investigated. Our research will revisit the above issues. This kind of research will have 

practical implications for the design of the storm-scale observing systems and data 

assimilation experiments.  

To successfully assimilate the radar data into NWP models, it is necessary to 

accurately simulate the radar measurements from the model data. This requires good 
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radar forward operator that computes model counterparts in radar observation space from 

related model variables on the three-dimensional grids. The radial velocity observation 

operator projects the three components of wind fields on model grids in a Cartesian 

coordinate to radial velocities in a spherical coordinate. A full radial velocity observation 

operator should consider the propagation path of the electromagnetic waves that can be 

affected by the earth curvature and the refractivity of the atmosphere, the radar beam 

pattern, the terminal velocity and even the signal processing algorithm used to determine 

the radial wind observation (Fabry 2010). This full equation is often hard to be applied in 

data assimilation system. Some kinds of simplifications are often introduced. For 

example, some early studies neglect the earth curvature and beam broadening effect. 

Recently, the factors of earth curvature and beam broadening are already included in 

many applications. However, a detailed study of the impact of beam broadening and earth 

curvature on storm-scale data assimilation has not yet been carried out explicitly.  

Various data assimilation techniques have been developed in order to extract 

maximum amount of information from WSR-88D radar observations and to get a better 

initial condition for storm-scale NWP model. These techniques include (but not limited to) 

the three-dimensional variational (3DVAR) technique, the four-dimensional variational 

(4DVAR) technique and the Ensemble Kalman Filter (EnKF) technique. These three 

techniques are briefed as follows. 

The 4DVAR technique uses the NWP model as a strong constraint and fits the model 

to observations at different time levels during a time window. By doing so, the best 

representation of the observations in the initial condition can be achieved and the initial 

condition is naturally dynamic consistent. In addition, the 4DVAR technique implicitly 
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includes the effects of time-evolving flow-dependent forecast error covariance. In recent 

years, the 4DVAR technique has enjoyed significant success at several operational NWP 

centers, including ECMWF, Meteo-France, Meteorological Service of Canada , and 

Japan Meteorological Agency (JMA), but mainly in global NWP systems (Rabier 2006). 

The application of the 4DVAR technique to storm-scale data assimilation has also been 

pioneered by some studies (Sun and Crook 1997, 1998; Sun and Crook 2001; Crook and 

Sun 2002; Sun 2005a). In spite of their inspiring results, the storm-scale application of 

4DVAR has so far been limited to simple microphysics. The strong nonlinearity in 

complex microphysics schemes is difficult to handle in the minimization process of 

4DVAR cost function. Honda and Koizumi (2006) reported difficulties, including slow 

convergence, in including complex ice microphysics within their 4DVAR system for a 

non-hydrostatic model at JMA. There are also other drawbacks for 4DVAR. The 

computational cost of 4DVAR is high, which limits its high-resolution applications. The 

development and maintenance of the adjoint model required by 4DVAR is not trivial. In 

real time applications, the 4DVAR assimilation procedure will not start unless the 

observations during the whole assimilation window are already available. This inevitably 

delays the dispatch of analysis results.  

The EnKF technique is an emerging advanced data assimilation method, which 

promises to produce similar assimilation quality with 4DVAR but avoids the derivation 

of the adjoint model and appears to be less sensitive to nonlinearity. The method 

generates an ensemble of model forecasts with different model settings and initial 

disturbances. The forecast error covariance can then be estimated from the ensemble 

members and it naturally evolves with time. Since first proposed by Evensen (1994), the 
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EnKF technique is gained considerable attentions in recent years in meteorology and 

oceanography (e.g. Burgers et al. 1998; Houtekamer and Mitchell 1998; Hamill and 

Snyder 2000; Bishop et al. 2001; Whitaker and Hamill 2002). Recently, the EnKF 

method has been applied to the assimilation of Doppler radar data (e.g. Snyder and Zhang 

2003; Zhang et al. 2004; Caya et al. 2005; Tong and Xue 2005; Aksoy et al. 2009; Zhang 

et al. 2009; Aksoy et al. 2010; Dowell et al. 2011). Although these experiments have 

shown a very good potential of the EnKF method for high-resolution applications, the 

EnKF technique remains a rather new, relative immature method. Its application to 

storm-scale NWP of thunderstorms remains a challenge. In the meantime, the EnKF 

method is also computationally intensive, generally requiring dozens of parallel analyses 

and forecasts.  

The 3DVAR technique is, although theoretically sub-optimal, much more 

computationally efficient and easy to be implemented compared to the 4DVAR, EnKF 

methods. It has been reaching a considerable maturity at operational NWP centers, but 

mainly in the context of large-scale hydrostatic flows (Derber et al. 1991; Parrish and 

Derber 1992; Courtier et al. 1998; Wu et al. 2002; Rabier et al. 2006).  

There are also some mesoscale applications (their model resolutions cannot resolve 

thunderstorms) of 3DVAR technique. Lindskog et al. (2004) reports the development of 

3DVAR scheme for the High Resolution Limited Area Model (HIRLAM). Barker et al. 

(2004) implements the 3DVAR scheme for the MM5 system and Xiao et al. (2005) 

further develops the MM5 3DVAR. Zhao et al. (2006, 2008) and Xu et al. (2010) applies 

the so-called 3.5DVAR method (Gu et al. 2001; Xu et al. 2001b; Xu et al. 2001a) to the 

Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS, Hodur 1997) (The 
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3.5DVAR is an extension of 3DVAR, which uses two time levels of radar volume scans 

to retrieve one time level of wind fields). Xiao and Sun (2007) demonstrated the ability of 

WRF 3DVAR to assimilate multiple radar data to improve short-range quantitative 

precipitation forecast.  

The application of 3DVAR method to storm-scale data assimilation is now an active 

research area. Gao et al. (1999; 2002; 2004) incorporated a 3DVAR system for the ARPS 

model (Xue et al. 2000; Xue et al. 2001; Xue et al. 2003) and Hu et al. (2006a; 2006b) 

applied it to assimilate radar data for the prediction of tornadic supercell storms. The 

ARPS 3DVAR system and its cloud analysis package have also been used to produce 

continental-US real-time weather predictions at a high 1km resolution (CAPS news, 

5/2009, http://www.caps.ou.edu). However, despite its successful application, the 

3DVAR scheme is often challenged by its sub-optimum due to its use of static isotropic 

background covariance structure and the lack of suitable balances among model variables 

in analysis. Efforts have been made to alleviate the negative impact of these drawbacks. 

Liu and Xue (2006; 2007) reports the effort to build a flow-dependent background error 

covariance for a 3DVAR system using an anisotropic recursive filters (Purser et al. 2003a, 

2003b) and demonstrates the improvement from this method in the retrieval of moisture 

from GPS slant-path water vapor observations. Hamill and Snyder (2000) and Wang et al. 

(2008a, 2008b) illustrates another direction to provide more reasonable flow-dependent 

time-evolving background covariance for a 3DVAR system from an EnKF method. This 

immerging technique is called the hybrid data assimilation and is still at its early stage of 

development. 
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Another alternative to mitigate the imbalance among model variables in a 3DVAR 

analysis is to develop suitable weak constraints to help spread the disturbance from 

ingested observations to other model variables that is not directly linked with 

observations. Gao et al.(1999, 2001, 2004), Hu et al. (2006a, 2006b), and Hu and Xue 

(2007) incorporated the continuity equation into the cost function and found that this 

weak constraint can effectively help build more reasonably wind fields. This is a good 

progress. However, there is still no suitable balance among the dynamic and 

thermodynamic fields. Further research is needed to investigate this issue. We propose in 

this research updating the ARPS 3DVAR system with a weak constraint based on the 

diagnostic pressure equation, which is derived from the full ARPS model momentum 

equations. This weak constraint couples the dynamic field and the thermodynamic fields. 

It is expected that this weak constraint can help properly balance different model 

variables and therefore, the analysis and the subsequent forecast can be improved. 

1.2 Outline of dissertation 

This dissertation is organized as follows. Chapter 2 will investigate the impact of 

different model variables on storm-scale 3D variational data assimilation using simulated 

radar data and further evaluate the role of wind fields in storm-scale NWP using a real 

data case study. Chapter 3 will discuss the impacts of beam broadening and earth 

curvature on storm-scale 3D variational data assimilation of radial velocity with two 

Doppler radars. Chapter 4 will report the development of a weak constraint derived from 

ARPS model momentum equations for storm-scale 3DVAR and its applications to 

tornadic supercell thunderstorms observed by multiple radars. Summary and future plans 

will be provided in Chapter 5. All the following Chapters will be presented in a 
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manuscript form, which allows each chapter has its own detailed background, 

introduction and methodology sections. 
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Chapter 2 Impact of Different Model Variables on Storm-scale Three-

dimensional Variational Data Assimilation 

2.1 Background 

The numerical weather prediction of thunderstorms is very important for the saving 

of people’s lives, properties. To get a good prediction of thunderstorms, the initial 

condition where a forecast starts from is expected to be as accurate as possible. During 

the past 20 years, lots of research has been done in order to get a better initial condition 

for storm-scale numerical weather prediction. There are generally two ways to do so. One 

is to develop and improve data assimilation techniques (such as 3DVAR, 4DVAR, and 

EnKF etc.) to make best use of available observations and background information. The 

other is to design and implement more high resolution observing systems to provide more 

types of observations.  

Currently, one component of three-dimensional wind fields can be observed by 

single Doppler radar. The horizontal wind fields can be retrieved from multiple 

NEXRAD radar velocity observations to certain accuracy if a good multiple radar 

coverage can be obtained. The rainfall information (rain water mixing ratio, snow water 

mixing ratio, hail mixing ratio) can be assumed to be derived from radar observed 

reflectivity (including dual-pol information), satellite imagery data and surface cloud 

reports. The storm-scale observing systems for other model variables are being advanced 

by the community. In the future, it will be expected that the vertical velocity field can be 

observed in high resolution by spaceborne/airborne high frequency Doppler radar. The 

water vapor field can be derived in high resolution from observations by next generation 
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GOES (Geostationary Operational Environmental Satellite), observations by dense 

ground-based GPS receiver network and radar refractivity observations. The temperature 

field can also be profiled in high resolution by next generation GOES. 

As more and more data assimilation and observing system studies are devoted into 

this area, some general questions are raised naturally across the community: What are the 

impacts of different data fields for successful data assimilation and the following 

forecasts? How much observation information is required to get a quality initial condition? 

Will a more frequent assimilation (rapid update) naturally yield good results? 

Weygandt et al. (1999) performed some experiments to study the relative importance 

of different data fields in a numerically simulated convective storm by withdrawing 

information about each model variable and then rerunning the simulation. It is found that 

the perturbation horizontal velocity has the greatest influence on the evolution of the 

simulated convective storm. Park and Droegemeier (2000) examined the sensitivities of a 

supercell storm to errors in model fields in the context of four-dimensional variational 

data assimilation. They concluded that the forecast error is most sensitive to the 

inaccuracy of temperature, followed by pressure and water vapor. Weygandt et al. (2002b, 

2002a) conducted several sensitivity tests and found that the supercell storm simulation 

was greatly dependent on initial moisture fields, especially water vapor field. Sun (2005a) 

studied the relative importance of different initial fields on the forecast of an observed 

supercell storm by resetting a given initial field to its base state. The result is that wind, 

water vapor and temperature perturbations showed largest sensitivities. Nascimento and 

Droegemeier (2006) examined, using an idealized bow echo convective system, the 

nature of dynamic adjustment that occurred after resetting a given model data field to its 
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base state. They found that horizontal wind fields are crucial for the correct evolution of 

the simulation. Fabry and Sun (2010) and Fabry (2010) studied the propagation of initial 

condition errors in mesoscale convections under 4DVAR context and found that error in 

midlevel moisture (humidity) has the greatest impact on the quality of the forecast.  

All the above researches contribute to our understanding of the relative importance of 

different data fields on the mesoscale/storm-scale data assimilation and prediction. 

However, because of their different context and different focus, there are some 

differences and conflicts among the conclusions of these researches. Some argued that 

the horizontal wind fields exert the greatest impact. Some showed that the moisture fields 

(especially water vapor / humidity) have the largest sensitivity. Some suggested that the 

error in temperature field was the most important factor that would affect the forecast. 

The differences among these studies call for more research on this issue. In the next 

section (Section 2.2), we will perform over dozen of idealized experiments to study the 

impact of different model variables on the accuracy of storm-scale data assimilation 

within a three-dimensional variational framework. In Section 2.3, we will further 

examine the role of wind fields in storm-scale NWP using a real data case study. 

2.2 Impact of different model variables - Experiments using simulated data 

2.2.1 Introduction 

In this part, we will try to re-investigate the impact of different data fields thoroughly 

in the context of a simplified 3D variational data assimilation (3DVAR) system. Unlike 

the “remove” method or sensitivity method used in most previous studies (e.g.Weygandt 

et al. 1999; Sun 2005a; Nascimento and Droegemeier 2006), we will try to examine the 

impact of different data fields in a direct way by assimilating them into the model. We 
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will perform a series of OSS data assimilation experiments, which assimilate different 

combinations of observed data fields, and then check whether each of them can 

successfully reproduces the storm structures (both dynamic and thermodynamic 

structures) and how long it will take to get such a successful assimilation. In the 

meantime, the impact of assimilation frequency will also be examined.  

This part is organized as follows. Section 2.2.2 will cover the methodology and the 

design of experiments, Section 2.2.3 will discuss the results from these experiments. 

Summary and future plan will be provided in Section 2.2.4. 

2.2.2 Methodology and experimental design 

2.2.2.1 The 3D variational formulation 

The standard formulation of variational methods is derived from first principles by 

Lorenc using Bayesian probabilities and assuming Gaussian error distributions (Lorenc 

1986).The concept of a variational method is to determine the analysis by direct 

minimization of a cost function. The cost function may be written as: 
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where BJ  measures the departure of the analysis x from the background, and is 

weighted by the inverse of the background error covariance matrix B; OJ  measures the 

departure )(xH , which is the projection of the analysis x in observational space, from the 

observations oy  and is weighted by the inverse of the observational error covariance 

matrix R. B and R are uncorrelated, and both are symmetric and positive definite. 
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In this study, the observations are directly drawn from the model variables, so no 

projection or interpolation is needed. Hence, we get a simplest form of the cost function: 
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The goal of an analysis is to find state ax , for which J is minimized. At the 

minimum, the derivative of J vanishes, and ax  satisfies 1( ) ( )bJ x B x x                           

1( ) 0oR x x    . The construction of background error covariance B-1 is similar to Gao 

et al. (1999). The standard deviation for each model variable will be provided in next 

section. 

In Eq. (2.1), the penalty term, usually represented by Jc, which can be used to build 

linkages among model variables by using some kind of equation constraints (e.g. mass 

continuity equation, buoyancy compensation equation, diagnostic pressure equation, etc) 

is not included. The reason is that although the equation constraints can help spread the 

observation information to some unobserved model variables; it complicates the data 

impact problem here. This study will particularly focus on the data impact of individual 

model fields, especially the first response of the model to the ingestion of data 

observations. The impact of equation constraints will be examined in Chapter 4. 

2.2.2.2 The prediction model and truth simulation 

In this study, we use simulated data from a classic May 20, 1977 Del City, Oklahoma 

supercell storm case (Ray et al. 1981). The Advanced Regional Prediction System (ARPS) 

is used to simulate such a deep convective storm within a 64 x 64 x 16 km physical 

domain. The model grid comprises of 67 x 67 x 35 grid points. Horizontal resolution of 

1km and vertical resolution of 0.5km are used. The truth simulation is initialized from a 
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modified real sounding plus a +4K ellipsoidal thermal bubble centered at x=48, y=16 and 

z=1.5km, with radii of 10km in x and y directions while 1.5km in z direction. The warm 

rain microphysical scheme is used together with a 1.5-order turbulent kinetic energy 

subgrid parameterization. Open conditions are used at the lateral boundaries. A wave 

radiation condition is also applied at the top boundary. Free-slip conditions are applied to 

the bottom boundary. The length of simulation is up to three hours. A constant wind of 

u=3ms-1and v= 14ms-1 is subtracted from the observed sounding to keep the primary 

storm cell near the center of model grid. The evolution of the simulated storms is similar 

to those documented in Xue et al. (2001). 

Fig. 2.1 shows the horizontal winds, perturbation potential temperature and 

reflectivity pattern from the control run at z=250m every twenty minutes from t=50 

minutes into the simulation run to t=110 minutes. During the control run, the supercell 

strengthens over the first 20 minutes. The strength of the cell then decreases thereafter. At 

around 55 minutes, the cell splits into two. The north-northeastward moving cell tends to 

dominate the system. Another cell moves northwestward and splits again at 95 minutes.  
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Fig. 2.1. The perturbation horizontal winds, perturbation potential temperature and 
reflectivity pattern from the control run at z=250m every twenty minutes from t=50 
minutes into the simulation run to t=110 minutes. (a) t=50min, (b) t=70min, (c) t=90min, 
(d) t=110min 

 

2.2.2.3 Experimental design 

After creating the truth (control) simulation of the tornadic thunderstorm, pseudo 

observations are generated by directly taken from the evolution of corresponding model 

variables. These pseudo observations are:  
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 Perturbation horizontal wind in x direction (u’ ) 

 Perturbation horizontal wind in y direction (v’ ) 

 Perturbation Vertical velocity (w) 

 Perturbation potential temperature ( ' ) 

 Perturbation water vapor mixing ration (qv
 ’ ) 

 Rain water mixing ratio (qr) 

The pseudo observations are assumed nearly perfect, exist at every model grid point, 

and thus the assimilation experiments are performed using the simple 3D variational 

method as mentioned in Section 2.2.2.1. Gaussian noises are then added to the above data 

fields to model the observation error. The standard deviation for each data field is list in 

Table 2.1 ( o ). In the meantime, Table 2.1 ( b ) also lists the standard deviation of 

model error for each corresponding model variable.  

 
Table 2.1. Standard deviation of observation error ( o ) and background error ( b ) 

 o  b  

u’ 1m/s 3m/s 

v’ 1m/s 3m/s 

w 0.667m/s 2m/s 

'  0.667K 2K 

qr 0.1g/kg 0.3g/kg 

qv
 ’ 0.25g/kg 0.75g/kg 
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The pseudo observations are taken from t=30 minutes into the control run to t=120 

minutes. The assimilation experiments start with a horizontally homogeneous background 

whose vertical variation is given by the same sounding as in the initial condition for the 

simulation run. The available pseudo observations are then assimilated into the model. 

The model runs for a given time span according to the selected data assimilation 

frequency. After the given time span elapsed, the observations are assimilated into the 

model again. This process repeats until the assimilation runs for ninety minutes. 

With the consideration of testing the impacts of different data fields under the 

context that these data fields can be observed by potential observing systems mentioned 

before, we assimilated sixteen combinations of different data fields respectively. These 

combinations are list in Table 2.2. Each combination is named by the data fields used in 

the assimilation. For example, “UVQv” represents assimilating perturbation horizontal 

winds in x direction u’, perturbation horizontal winds in y direction v’ and perturbation 

water vapor qv into the model at the same time. Note that for simplicity, the ’ sign is 

omitted, the first letter is capitalized, ' is replaced by “Pt”. For every combination of 

observations, three assimilation experiments are preformed which are designed to use 

three different assimilation frequencies, i.e. every 1 minute, every 5 minutes , every 10 

minutes.  Hence, it is a natural choice to refer an individual data assimilation experiment 

as the combination of observations it used plus an underscore “_” followed by the 

assimilation frequency. As an example, “UVQv_5” refers to the experiment that 

assimilate u’, v’ and qv’ every 5 minutes. 



18 

 

Table 2.2. The list of experiments and their corresponding “Successful-recovery time” ( 
see text for the definition “Successful-recovery time”) 

 

 Assimilation           
       frequencies  
               (per mins) 
 

Observation  
combinations 

1 5 10 

U    

W    

Pt    

Qv    

Qr    

UV 30 68  

UPt    

UQv  51  

UQr    

UVPt 41 32  

UVQv 19 23 31 

UVQr 28 48 81 

UVW 26 38 71 

UVWPt 30 26 42 

UVWQv 18 20 22 

UVWQr 24 27 61 
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At the beginning of the assimilation experiments, there is no storm signature in the 

model. As the observations are assimilated into the model, the storm structures are 

gradually recovered. It is expected that the data assimilation could finally recover both 

the dynamic and thermodynamic fields of the thunderstorm and these fields should be 

very close to that of the control run. Since these are much idealized experiments, we set a 

strict criterion to evaluate whether an experiment does successfully recover the storm 

structures. The criterion goes as follows: First we compute the RMS error of the three 

components of wind fields (u’, v’, w’), the perturbation potential temperature( ' ), the 

simulated reflectivity(ref) and the perturbation water vapor mixing ratio (qv’) between 

the assimilation run and the control run every one minute. As the assimilation cycles 

forward, the RMS error is expected to decrease. When the RMS error of the three 

components of wind fields (u’, v’, w’) is below 2.0m/s, the RMS error of the perturbation 

potential temperature( ' ) is below 1.0K, the RMS error of the simulated reflectivity(ref) 

is below 10dBz, and the RMS error of the perturbation water vapor mixing ratio (qv’) is 

below 0.3g/kg, the storm can be described as successfully recovered in this assimilation 

run. A “successful-recovery” is therefore defined as the status when the storm structures 

are successfully recovered under the above criterion. A “successful-recovery time” is 

defined as a time duration that an assimilation run takes to reach a “successful-recovery”.  

It should be noted that when calculating the RMS error, only grids which are located 

in the cloudy region (here we refer to the region where simulated reflectivity ≥10dBz) 

are taken into account. 
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2.2.3 The Results of assimilation experiments 

As mentioned in Section 2.2.2.3, there are sixteen different combinations of 

observations; each is assimilated with three different frequencies (every one minute, five 

minute, ten minutes). Hence, there are a total of forty-eight data assimilation experiments. 

For every experiment, the RMS error evolution is computed and then is used to decide 

the so-called “successful-recovery time” as defined in Section 2.2.2.3. Table 2.2 lists all 

experiments and their corresponding “successful-recovery time” in unit of minutes. A 

blank will be left for those experiments that do not reach a “successful-recovery” at the 

end of the assimilation run.   

2.2.3.1 Experiments with observations from only one model variable 

The experiments assimilating observations from single model variable will be 

investigated here to examine the model’s first response to the ingestion of different 

observations and to what extent the storm dynamic and thermodynamic structure can be 

recovered during the assimilation runs. For simplicity, the following discussion will be 

based on experiments that assimilate observations every five minutes. 

2.2.3.1.1 Assimilating U component of wind fields 

Fig. 2.2 shows the evolution of U component of perturbation wind fields, vertical 

velocity, perturbation potential temperature and water vapor mixing ratio from the “U_5” 

experiment during the first 5-minutes assimilation cycle. It can be seen that at the first 

data assimilation cycle, the U component of perturbation wind fields is updated by the 

analysis step. The model is then integrated forward and the convergence/divergence in 

the U component of wind fields leads to the adjustments in the vertical velocity field. The 
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established vertical air movement then perturbs the potential temperature field and the 

water vapor field, which are horizontally homogeneous before. As the model integrates 

further forward, the magnitude of U component of perturbation wind fields and vertical 

velocity field decreases while those of water vapor field and perturbation potential 

temperature field increases.  

This kind of data impact will be reinforced as new observations are ingested into the 

model at the subsequent data assimilation cycles. The adjustments in dynamic fields and 

thermodynamic fields will eventually induce rainfall at some time. Fig. 2.3 shows the 

perturbation horizontal winds, perturbation potential temperature and reflectivity pattern 

at z=250m MSL every twenty minutes from t=20 minutes into the assimilation run to 

t=80 minutes (which corresponds the time period from t=50 minutes into the simulation 

run to t=110minutes). It is clear that after four data assimilation cycles (20 minutes into 

the assimilation run), a small area of weak rainfall has been produced (see Fig. 2.3a). As 

the assimilation run goes on, the rainfall becomes stronger and spreads to wider area.  

After 80 minutes of assimilation run, the recovered storm at the center of domain can be 

even comparable to that in control run. However, considerable discrepancies in the 

perturbation potential temperature field and the perturbation wind fields still exist. The 

left-moving storm near the up-left corner of the domain is still barely recovered.   

To investigate further the assimilation results, Fig. 2.4 shows the evolution of RMS 

error for the “U_5” experiment. It can be seen that although the RMS error of simulated 

reflectivity decreases steadily with time, the RMS errors of other model variables do not 

show evident decrease during ninety minutes of data assimilation. Bearing in mind that 

this is a much-idealized experiment and under our definition of "successful-recovery", 
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this experiment is regarded that it fails to successfully recover the simulated 

thunderstorms.  
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Fig. 2.2. The U component of perturbation wind fields, perturbation vertical velocity, 
perturbation potential temperature, water vapor mixing ratio for the “U_5” experiment at 
z=4km MSL. (a),(b),(c),(d) are at t=0s into the assimilation run; (e),(f),(g),(h) are at t=6s 
into the assimilation run, (i),(j),(k),(l) are at t=12s into the assimilation run; 
(m),(n),(o),(p) are at t=300s into the assimilation run. 
 



23 

0.0 16.0 32.0 48.0 64.0
0.0

16.0

32.0

48.0

64.0

(km)

(k
m

)

Ref (dBZ, Shaded) Min=0.00 Max=34.8

0.
0

0.
0

0.
0

0.0

0.
0

ptprt (K, contour) Min=-.3377 Max=0.7857 inc=1.000
U-V (m/s, Vector) Umin=-6.64 Umax=9.62 Vmin=-5.25 Vmax=5.15

10.010
.0

15.

20.

25.

30.

35.

40.

45.

50.

55.

60.

65.

70.

75.

80.

0.0 16.0 32.0 48.0 64.0(km)

Ref (dBZ, Shaded) Min=0.00 Max=54.6

-2.0

0.0

0.0

0.0

0.
0

0.00.0

0.
0

0.0

0
.0

0
.0

0
.0

0.
0

0.0

ptprt (K, contour) Min=-4.114 Max=0.8107 inc=1.000
U-V (m/s, Vector) Umin=-5.02 Umax=14.41 Vmin=-8.49 Vmax=6.32

0.0 16.0 32.0 48.0 64.0
0.0

16.0

32.0

48.0

64.0

(km)

(k
m

)

Ref (dBZ, Shaded) Min=0.00 Max=58.6

-4
.0

-4.0

-4.0

-2
.0

-2.0

-2
.0

0.0

0.0

0.
0

0
.0

0.
0

0.0
0.

0

0.
0

0.0

ptprt (K, contour) Min=-5.374 Max=0.5873 inc=1.000
U-V (m/s, Vector) Umin=-7.04 Umax=16.85 Vmin=-17.56 Vmax=10.29

15.

20.

25.

30.

35.

40.

45.

50.

55.

60.

65.

70.

75.

80.

0.0 16.0 32.0 48.0 64.0(km)

Ref (dBZ, Shaded) Min=0.00 Max=57.7

-4.0

-4.0

-4.0
-2.0

-2.0

-2.0

-2
.0

-2.0

0.0

0.0

0.0 0.0

0.0

0.0

0
.0

0.0

ptprt (K, contour) Min=-5.792 Max=0.4926 inc=1.000
U-V (m/s, Vector) Umin=-6.20 Umax=16.29 Vmin=-21.34 Vmax=7.84

a

dc

b

 

Fig. 2.3. The perturbation horizontal winds, perturbation potential temperature and 
reflectivity pattern for the “U_5” experiment at z=250m every 20 minutes from t=20 
minutes into the assimilation run to t=80 minutes (which corresponds the time period 
from t=50 minutes into the simulation run to t=110minutes). (a) t=20min, (b) t=40min, 
(c) t=60m, (d)t=80m. 
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Fig. 2.4. The RMS error evolution every one minute for the “U_5” experiment 
 

2.2.3.1.2 Assimilating perturbation vertical velocity 

When the perturbation vertical velocity is assimilated into the model at the first cycle, 

other model fields will be perturbed by the upward or downward advection. Warm moist 

air in the low level is then brought upward. When it gets saturated, condensation begins. 

Model dynamic and thermodynamic fields will then adjust accordingly. The data impact 

is reinforced through the subsequent intermittent data assimilation cycles. Fig. 2.5 shows 

the perturbation horizontal winds, perturbation potential temperature and reflectivity 

pattern at z=250m MSL every twenty minutes from t=20 minutes into the assimilation 

run to t=80 minutes (which corresponds the time period from t=50 minutes into the 

simulation run to t=110minutes). It can be seen that in terms of rainfall pattern, the storm 

cell near the center of the domain is essentially recovered at nearly the end of the 
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assimilation run (Fig. 2.5d). The storm cell at the upper-left corner is also partially rebuilt. 

Overall, the “W_5” experiment recovers a better rainfall pattern than the “U_5” 

experiment. 
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Fig. 2.5. The perturbation horizontal winds, perturbation potential temperature and 
reflectivity pattern for the “W_5” experiment at z=250m every 20 minutes from t=20 
minutes into the assimilation run to t=80 minutes (which corresponds the time period 
from t=50 minutes into the simulation run to t=110minutes). (a) t=20min, (b) t=40min, 
(c) t=60m, (d)t=80m. 
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Fig. 2.6. The RMS error evolution every one minute for the “W_5” experiment 
 

On the other hand, noticeable discrepancies still exist in the horizontal wind fields, 

perturbation potential temperature fields. Further, the rainfall pattern is not close enough 

to the truth either. The evolution of RMS error (Fig. 2.6 ) confirms this conclusion. Under 

our definition of "successful-recovery", this experiment is also regarded that it fails to 

successfully recover the simulated thunderstorms.  

2.2.3.1.3 Assimilating perturbation potential temperature 

When the perturbation potential temperature is assimilated into the model, the direct 

impact on the model is the change of air buoyancy, which in turn to promote vertical air 

motion. The horizontal wind field and water vapor field then change accordingly. The 

rainfall is produced gradually with continued data assimilation cycles. 
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Fig. 2.7. The perturbation horizontal winds, perturbation potential temperature and 
reflectivity pattern for the “Pt_5” experiment at z=250m every 20 minutes from t=20 
minutes into the assimilation run to t=80 minutes (which corresponds the time period 
from t=50 minutes into the simulation run to t=110minutes). (a) t=20min, (b) t=40min, 
(c) t=60m, (d)t=80m. 

 

Fig. 2.7 shows the perturbation horizontal winds, perturbation potential temperature 

and reflectivity pattern at z=250m MSL every twenty minutes from t=20 minutes into the 

assimilation run to t=80 minutes (which corresponds the time period from t=50 minutes 

into the simulation run to t=110minutes). It is shown that near the end of the assimilation 
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run, the recovered rainfall pattern (Fig. 2.7d) is comparable to those in the truth run (Fig. 

2.1d). Two storm cells are located at the correct location and with similar strength. 

However, the area with reflectivity value in-between 15dBZ-25dBZ is still evidently 

different from those in the truth run.  

Fig. 2.8 presents the evolution of RMS error from the “Pt_5” experiment. It clearly 

shows that the assimilation of temperature observations have greater impact on the 

recovery of rainfall pattern than other model structures. The vertical velocity field is only 

partially rebuilt. The horizontal wind field and the water vapor field are poorly retrieved. 

On the whole, under our definition of "successful-recovery", this experiment is regarded 

that it fails to successfully recover the simulated thunderstorms.  

 

 

Fig. 2.8. The RMS error evolution every one minute for the “Pt_5” experiment 
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2.2.3.1.4 Assimilating perturbation water vapor 
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Fig. 2.9. The perturbation water vapor mixing ratio, perturbation potential temperature, 
perturbation vertical velocity, cloud water mixing ratio for the “Qv_5” experiment at 
z=4km MSL. (a),(b),(c),(d) are at t=0s into the assimilation run; (e),(f),(g),(h) are at t=6s 
into the assimilation run, (i),(j),(k),(l) are at t=12s into the assimilation run; 
(m),(n),(o),(p) are at t=300s into the assimilation run. 
 

When the perturbation water vapor observations are assimilated into the model at the 

first data assimilation cycle, the major response from the model is to produce cloud water 
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through condensation (Fig. 2.9h) and heat the air through latent heating released from the 

condensation (Fig. 2.9f). The change of buoyancy due to the contribution of perturbation 

water vapor is another response from the model; however, the impact is very small. This 

can be confirmed from Fig. 2.9g, which shows that the vertical velocity barely changes 

initially. Detailed scale analysis (not shown here) for buoyancy terms indicates that the 

contribution of perturbation water vapor to the buoyancy is at the order of 0.01 m s-2 near 

storm center while the contribution of perturbation potential temperature is at the order of 

0.1m s-2. Therefore, the buoyancy response from the assimilation of water vapor 

observations is rather small compared to the impact of condensation and latent heating, at 

least in this case. 

The recovery of rainfall pattern goes well in this experiment as shown in Fig. 2.10. As 

early as at t=40 minutes (Fig. 2.10b) into the assimilation run, the rainfall pattern has 

already been comparable to those in the truth run. At nearly the end of the assimilation 

run (Fig. 2.10d), the rainfall pattern is closer to the truth. The final RMS error for 

simulated reflectivity at t=90 minutes into the assimilation run is 7.35dBZ, already below 

our “successful-recovery” criterion 10dBZ. The recovery of temperature field also goes 

okay. Fig. 2.10d shows that the cold pool is re-established around both the two storm 

cells. The location and coverage are very acceptable as compared to those in the truth 

simulation, although noticeable differences still exist in term of the distribution of 

temperature field near the two storm centers. The final RMS error for perturbation 

potential temperature is 1.2 K, which is very close to our “successful-recovery” criterion 

1K. However, the wind fields, especially horizontal wind fields are poorly recovered. 

This can be seen from Fig. 2.11, which presents the evolution of RMS errors for the 
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“Qv_5” experiment. The decreases of RMS errors for U, V components of wind fields are 

very limited. Therefore, on the whole, under our definition of “successful-recovery”, this 

experiment is still considered that it fails to successfully recover the simulated 

thunderstorms. 
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Fig. 2.10. The perturbation horizontal winds, perturbation potential temperature and 
reflectivity pattern for the “Qv_5” experiment at z=250m every 20 minutes from t=20 
minutes into the assimilation run to t=80 minutes (which corresponds the time period 
from t=50 minutes into the simulation run to t=110minutes). (a) t=20min, (b) t=40min, 
(c) t=60m, (d)t=80m. 
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Fig. 2.11. The RMS error evolution every one minute for the “Qv_5” experiment 
 

2.2.3.1.5 Assimilating rain water  

When the rainwater pseudo observations are assimilated into the model, its major 

impact is to change the buoyancy through water loading effect and therefore to produce 

downward vertical motion (Fig. 2.12e, h).  The evaporative cooling (Fig. 2.12f, i) is 

another noticeable impact. Wind fields and water vapor fields will then adjust 

accordingly.  

With continued intermittent data assimilation, the cold pool is rebuilt well (Fig. 2.13) 

although there still exists noticeable difference in the strength and distribution. On the 

other hand, the mid-upper level temperature field is not-so-well retrieved (not shown). 

The wind fields and water vapor field are barely recovered as shown in Fig. 2.14, which 
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presents the evolution of RMS error for the “Qr_5” experiment.  This means that this 

experiment fails to successfully recover the simulated thunderstorms. 
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Fig. 2.12. The rainwater mixing ratio, perturbation vertical velocity, perturbation 
potential temperature from the “Qr_5” experiment, at z=4km MSL. (a),(b),(c) are at t=0s 
into the assimilation run; (d),(e),(f) are at t=6s into the assimilation run, (g),(h),(i) are at 
t=12s into the assimilation run. 
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Fig. 2.13. The perturbation horizontal winds, perturbation potential temperature and 
reflectivity pattern for the “Qr_5” experiment at z=250m every 20 minutes from t=20 
minutes into the assimilation run to t=80 minutes (which corresponds the time period 
from t=50 minutes into the simulation run to t=110minutes). (a) t=20min, (b) t=40min, 
(c) t=60m, (d)t=80m. 
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Fig. 2.14. The RMS error evolution every one minute for the “Qr_5” experiment 
 

2.2.3.2 Experiments with observations from two model variables 

In this section, we will mainly discuss the experiments “UV_5”, “UPt_5”, “UQv_5” 

and “UQr_5”, which are performed with an assimilation frequency of every five minutes. 

Other experiments with same amount of model field combinations but with different 

assimilation frequencies (every one minute, every ten minutes) will be investigated in 

Section 2.2.3.5.  

The experiments “UPt_5” and “UQr_5” do not reach a “successful-recovery” while 

the experiment “UV_5” and “UQv_5” successfully recover the storm structures at t=68 

minutes and t=51minutes into the assimilation run respectively. This implies that the 

horizontal wind field and the water vapor field have much larger impact on the storm-
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scale data assimilation. As an example, Fig. 2.15 shows the evolution of the RMS error 

for the experiment “UQv” and Fig. 2.16 shows the plots of perturbation horizontal winds, 

perturbation potential temperature and reflectivity pattern at z=250m every twenty 

minutes from t=20 minutes into the assimilation run to t=80 minutes (which corresponds 

to the time period of the simulation run from t=50 minutes to t=110minutes). In Fig. 2.15, 

the RMS errors in every model data fields decreased quickly as the U component of the 

perturbation horizontal wind fields and the perturbation water vapor are assimilated into 

the model. After sixty minutes of assimilation, the storm structures have already been 

successfully recovered, and the storm looks nearly exactly the same as that in the control 

run (Fig. 2.16c). 

The experiment “UPt_5” does not successfully recover the storm structures even after 

90 minutes of assimilation. This behavior is a little bit unexpected since previous studies 

(Park and Droegemeier 2000; Sun 2005a) demonstrated the importance of the 

temperature field. A detailed investigation of this experiment reveals that at the end of the 

assimilation run, the RMS errors of the wind fields and water vapor fields remain above 

2.0m/s and 0.4g/kg respectively. Under the criterion of “successful-recovery” in this 

study, this assimilation run cannot be regarded as an experiment with a “successful-

recovery”. It can be concluded that the perturbation potential temperature has less impact 

on the data assimilation than horizontal winds and moisture field. However, on the other 

hand, the rainfall pattern (not shown) is recovered very well in this experiment (The RMS 

error of reflectivity reaches 5dBz at the end of the assimilation). 

The experiment “UQr_5” also fails to reach a “successful-recovery” after ninety 

minutes of assimilation. This implies that directly assimilating the radial velocity (U) and 
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reflectivity (Qr) from single radar alone (without the proper adjustment in other 

hydrometers and temperature) may not be good enough to make a successful storm-scale 

data assimilation. 

 

 

 

Fig. 2.15. The RMS error evolution every one minute for the “UQv_5” experiment 
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Fig. 2.16. The perturbation horizontal winds, perturbation potential temperature and 
reflectivity pattern for the experiment “UQv_5” at z=250m every 20 minutes from t=20 
minutes into the simulation run to t=80 minutes (which corresponds the time period from 
t=50 minutes into the simulation run to t=110minutes). (a) t=20min, (b) t=40min, (c) 
t=60min, (d) t=80min. 

 

2.2.3.3 Experiments with observations from horizontal winds plus one more model 

variable 

The experiment “UV_5” yields a “Successful-recovery time” of sixty-eight minutes 

(Table 2.2). It indicates that with observed horizontal winds, the assimilation run can 
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successfully recover the storm structures. This has good practical implication for dual-

radar or multiple-radar data assimilation where the horizontal wind fields can be revealed 

in a better quality than single radar data assimilation. On the other hand, the experiment 

“UV_5” still takes sixty-eight minutes to reach a “successful-recovery”. That is a little bit 

long considering the operational need of quick delivery of storm-scale predictions. 

Assimilating observation from one more model variable may mitigate this problem. 

As seen in Table 2.2, the experiment “UVPt_5” has a “successful-recovery time” of 

thirty-two minutes, the experiment “UVQv_5” has a “successful-recovery time” of 

twenty-three minutes and the experiment “UVQr_5” with a “successful-recovery time” of 

forty-eight minutes. All these “successful-recovery time” are much shorter than the 

“sixty-eight” minutes in the “UV_5” experiment.  

It is worthy to note that the shortest “successful-recovery” time in “UVQv_5” 

experiment confirms the importance of water vapor field, which exerts much larger 

impact than the perturbation potential temperature field and rain water mixing ratio field. 

In the meantime, the perturbation potential temperature field has evidently positive 

contribution to the data assimilation at the presence of a quality horizontal wind fields. 

The rain water mixing ratio filed can also help accelerate the “successful-recovery” time. 

It implies that directly assimilating the radar reflectivity is helpful to the storm-scale data 

assimilation under the context that there exists sufficient horizontal wind information. 

2.2.3.4 Experiments with observations from 3D winds plus one more model variable 

The experiment assimilating the completely 3D wind fields yields a “successful-

recovery time” of thirty-eight (the “UVW_5” experiment in Table 2.2). This is quite 

acceptable for storm-scale data assimilation and forecast. It is much shorter than the 
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experiment assimilating only horizontal wind fields (the “UV_5” experiment in Table 

2.2). Along with the fact that the “UV_5” experiment performed much better than the 

“U_5” experiment, it is suggested that for storm-scale data assimilation, most efforts 

should be made on getting a complete 3D wind fields as accurate as possible. In practice, 

this implies that multiple radar data assimilation can benefit storm-scale NWP. It is also 

confirmed by other research. Schenkman et al (2011) has shown that assimilating extra 

CASA (Collaborative and Adaptive Sensing of the Atmosphere) radar data in addition to 

WSR-88D radar data can improve the forecast of convective storms(A CASA radar 

observes the lower part of the atmosphere where a WSR-88D radar generally cannot 

observe). In Chapter 4, we will demonstrate the benefits from four WSR-88D radars 

compared to single radar for the prediction of a tornadic supercell thunderstorm. Another 

implication from the above finding is to further develop advanced velocity retrieval 

schemes in order to get better wind analysis. For example, Shapiro et al (2009) reported 

that including a vorticity equation constraint into a variational framework could improve 

dual-Doppler wind analysis.  

The experiments “UVWPt_5”, “UVWQv_5” and “UVWQr_5” all performs better 

than the experiment “UVW_5” since all of them have much smaller “successful-recovery 

time” than the experiment “UVW_5”. It indicates that one more observed model variable 

can improve the data assimilation further even the full dynamic fields are observed very 

accurately. When the full 3D wind fields are assimilated, the model will experience an 

adjustment period, during which the perturbations in the 3D wind fields spread to other 

variables to re-construct dynamic balance among different model fields. One more 
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observed model variable can help accelerate the adjustment process and then improve the 

performance of the data assimilation.   

Among the experiments “UVWPt”, “UVWQv”, “UVWQr”, the water vapor field 

again shows larger impact than the potential temperature field and the rain water field. 

2.2.3.5 The impact of assimilation frequency 

In Table 2.2, the experiments for assimilating observations every five minutes all 

have a small “successful-recovery time” than the corresponding experiments assimilating 

the same amount of observations but every ten minutes. The better performance for the 

five-minute-interval experiments over the ten-minute-interval experiments is due to the 

benefit from a high assimilation frequency. If observations are assimilated into the model 

and no more new data are ingested, the impact of the observations will gradually 

decreased as the assimilation model is integrated forward in time. However, when the 

model variables are updated more frequently in time, the data impact can be consolidated 

and sustained longer. In this way, the high data updating frequency improve the quality of 

the data assimilation.  

The above statements naturally lead to a question: since a higher assimilation 

frequency can produce better results, can we assimilate observations as frequent as 

possible in order to get a better quality data analysis? The answer is no. In Table 2.2, 

assimilating observations every one minute does not generally show an evident 

improvement over assimilating observations every five minutes. The “successful-

recovery time” of the experiments “UVQv_1”, “UVWQv_1”, “UVWQr_1” are generally 

only 2~4 minutes smaller than that of the experiments “UVQv_5”, “UVWQv_5”, 

“UVWQr_5”.  This kind of slight improvement of one-minute-interval assimilation over 
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five-minute-interval assimilation is very negligible compared to the much more burden it 

may bring to the computation resources. 

The experiments of “UQv_1”, “UVPt_1”, and “UVWPt_1” have a longer 

“successful-recovery time” than the experiments of “UQv_5”, “UVPt_5”, and 

“UVWPt_5”.  This demonstrates that in some situation, such as the above combinations 

of observations, high time frequency of assimilation may have negative impact on the 

analysis.  There are also some exceptions where more frequent data assimilation yields 

better results.  

The above findings suggest that for different observation combinations, the optimal 

assimilation frequencies may be different. Hu and Xue (2007) investigated the impact of 

the assimilation settings on the data assimilation and its following forecast. They found 

that a ten-minute-interval assimilation scheme is the best choice for their data 

assimilation and forecast of the 8 May 2003 Oklahoma City Tornadic Thunderstorm. 

However, in their research, a five-minute-interval assimilation scheme, if properly 

configured, could also make a good prediction although slightly worse than the best run. 

This finding contributes to our understanding of the impact of storm-scale data 

assimilation frequency. It can be therefore concluded that the data assimilation frequency 

has important impact on the quality of data assimilation and the subsequent forecast. An 

assimilation frequency of every five or ten minutes is now a common practice in storm-

scale data assimilation. 

2.2.4 Summary and future plan 

Nowadays, there is a great need for quality storm-scale NWP (Numerical Weather 

Prediction) of thunderstorms. Various storm-scale data assimilation schemes are 
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developed in order to provide a more accurate initial condition for the storm-scale NWP 

model in order to deliver a better forecast. Despite many studies focus on this area, a 

clear understanding of the impacts of different data fields and data assimilation frequency 

is still lacking. Some researchers have put their attentions to this issue. However, the 

complexity of this topic and the difference in the findings of previous research call for 

further investigation on this topic. 

In this study, under the context of simplified 3D variational data assimilation, we 

examined the impact of different data fields and assimilation frequencies through a series 

of data assimilation experiments that ingested different combinations of observations 

taken from model variables. A term of “successful-recovery” is defined using the RMS 

error of model variables between the assimilation run and the control run. It describes a 

kind of criteria when both the dynamic and thermodynamic structures of the storm in the 

assimilation run are recovered to be very close to the simulated storm in the control run. 

This method is then used to evaluate the performance of different data assimilation 

experiments so that the impacts of different data fields and assimilation frequencies are 

disclosed. 

It is found that observations from only one model variable are not sufficient to make a 

“successful-recovery” after ninety minutes of data assimilation. It indicates that the 

ability of one observed model variable to make a good storm-scale data assimilation is 

really limited. The observations from the vertical velocity, the water vapor mixing ratio, 

the potential temperature are good at recovering thermodynamic fields and spinning-up 

the rainfall pattern to an acceptable accuracy but perform poorly in rebuilding the three 

dimensional wind fields. The rain water mixing ratio observations are very helpful to 
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reduce the rainfall “spin-up” problem and build a cold pool but fail to re-establish other 

dynamic and thermodynamic fields. The observations from one component of wind fields 

can produce some kind of recovery at temperature, moisture, vertical velocity fields and 

rainfall pattern. However, the recovered structure, especially the three-dimensional wind 

structure, is still noticeable different from the truth.  

Another important finding is that horizontal wind fields have the most important 

impact on the storm-scale 3D data assimilation. It is not only because the assimilation of 

the horizontal wind fields alone can successfully recover all other model fields, but also 

due to the fact that the horizontal wind fields are a must and a good sustain to 

express/enhance the impact of other model variables such as perturbation water vapor, 

perturbation potential temperature, rain water mixing ratio. In practice, great efforts 

should be made to get as much wind information as possible and as accurate as possible. 

This calls for dual-radar data assimilation, multiple radar data assimilation and the 

development of advanced wind analysis techniques. 

When a good picture of the horizontal wind fields can be obtained, extra observations 

from other model variables will improve the data assimilation and the subsequent forecast. 

Among these “other model variables”, the perturbation water vapor field exerts the 

greatest impact. In practice, to get storm-scale water vapor observations is a very difficult 

task. However, some of water vapor information can be derived from the refractivity data 

observed by radars. These derived data can then be assimilated into the model. There are 

already some research focusing on this issue (Fabry et al. 1997; Bodine et al. 2010). In the 

future, water vapor information may be available in high resolution due to the advances 

in the observing systems such as next generation GOES (Geostationary Operational 



45 

Environmental Satellite), dense ground-based GPS receiver network. At that time, our 

NWP for storm-scale phenomena may be greatly improved. 

The last finding is about the impact of data assimilation frequency. Generally, the 

data assimilation frequency will exert important effect on the quality of the data 

assimilation. Despite of the difficulties to find an optimal data assimilation frequency for 

a data assimilation configuration, it is now a common practice to assimilate observations 

every five or ten minutes for storm-scale NWP. 

2.3 The role of wind fields in storm-scale NWP - a real data case study 

2.3.1 Introduction 

One of the most important findings in Section 2.2 is that the horizontal wind fields 

exert the greatest impact on the storm-scale 3D variational data assimilation. This 

conclusion is drawn from an idealized case study. Although it agrees with some previous 

studies (e.g. Weygandt et al. 1999), it is still in question whether the same conclusion can 

be drawn under the context of real world data assimilation and numerical forecast. Hu et 

al. (2006b) reported that assimilating radial velocity from single radar alone failed to 

predict the Fort Worth, Texas, tornadic thunderstorms. In the meantime, it is also 

mentioned in Hu and Xue (2006b) that the small impact of radial velocity data is partly 

due to the limited data availability from single radar. What will happen if we can 

assimilate the radial velocity data from multiple radars? This calls for more real case 

studies. Considering the current operational WSR-88D radars in NEXRAD network are 

densely deployed in some areas of the Nation, we may easily find thunderstorms that fall 

into the coverage of several radars. The 4-5 May 2007 Greensburg tornadic thunderstorm 
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is such a case. In the following sections, we will seek to investigate the impact of the 

wind fields, observed by six radars, on the storm-scale analysis and forecast.  

This part is organized as follows. Section 2.3.2 briefs the ARPS prediction model, the 

ARPS 3DVAR system and the included cloud analysis package. Section 2.3.3 is a general 

description of the 4-5 May 2007 Greensburg, Kansas (KS) tornadic thunderstorms. In 

Section 2.3.4, the design of experiments is discussed and Section 2.3.5 presents the 

results from the experiments. Summary and future plan is provided in Section 2.3.6. 

2.3.2 The ARPS model, 3DVAR system and cloud analysis scheme  

The ARPS (Advanced Regional Prediction System) is used as the prediction model in 

this study. It is a general-purpose three-dimensional, non-hydrostatic and compressible 

atmospheric model that is well documented in several early publications (Xue et al. 2000; 

Xue et al. 2001; Xue et al. 2003). In this section, we will only briefly review ARPS 

3DVAR data assimilation system and its cloud analysis scheme. Following Gao et al. 

(2004), the standard cost function of 3DVAR can be written as, 

         1 11 1
( )

2 2

T Tb b o o
cJ H H J             x x x B x x x y R x y x         (2.3) 

where the first term on the right hand side measures the departure of the analysis 

vector, x, from the background vector, xb, weighted by the inverse of the background 

error covariance matrix B. In the current ARPS 3DVAR system, the analysis vector x 

contains the three wind components (u, v, and w), potential temperature (θ), pressure (p) 

and water vapor mixing ratio (qv). The second term, observation term, measures the 

departure of the analysis vector, projected into observation space, from the observation 

vector, yo. In this study, yo only includes radar radial velocity data. The analysis is 
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projected to the observation space by the forward operator H that is defined by radar 

radial wind equation and interpolation operator from model grid points to radar 

observation locations. The observation term is weighted by the inverse of observation 

error covariance matrix R that includes both the instrument and representativeness errors. 

Term ( )cJ x  in Equation (2.3) represents dynamic or equation constraints.  

By defining  b Bv x x , the cost function is changed into an incremental form: 

   1 2 1 1 21 1
( ) ( )

2 2

TT
inc cJ J    v v v HB v d R HB v d v                        (2.4) 

where H is the linearized version of H and  bo H xyd  . In the current version 

of the ARPS 3DVAR system, the cross-correlations between variables are not included in 

the background error covariances. The spatial covariances for background error are 

modeled by a recursive filter (Purser et al. 2003b, 2003a). The corresponding covariance 

matrix, R, is diagonal, and its diagonal elements are specified according to the estimated 

observation errors. 

In ARPS 3DVAR, the mass continuity equation is imposed as a weak constraint. This 

constraint builds up the relationship between different wind components. Gao et al. (1999; 

2004) and Hu et al. (2006b) found that this constraint is very effective in producing 

reasonable analyses of vertical velocity. When a stretching grid strategy is used in 

vertical direction, a special treatment (Hu et al. 2006b), which assigns different weighting 

coefficients in the horizontal and vertical directions, is required to apply this weak 

constraint.  

The cloud analysis is based on the Local Analysis and Prediction system (LAPS, 

Albers et al. 1996) with significant modifications by Zhang (1998), Brewster (2002), and 
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Hu et al (2006a) and used to assimilate reflectivity data into the ARPS. The purpose of 

assimilating reflectivity is to decrease the “spin up” time of storm development in 

numerical models. 

2.3.3 The Greensburg Kansas tornadic thunderstorm 

We chose the 4-5 May 2007 Greensburg, Kansas (KS), tornadic thunderstorm case 

for our test because it is well documented, falling in the coverage of six WSR-88D radars. 

The storm complex produced 18 tornadoes in the Dodge City forecast area and 47 

tornado reports in Kansas, Nebraska and Missouri. One of them is the strongest tornadoes 

in recent years. The tornado started moving through Greensburg at 0245 UTC 5 May 

2007 (21:45 CDT 4 May) and destroyed over 90 % of the town. The tornado damage was 

rated at EF5 - the highest rating on the Enhanced Fujita scale (McCarthy et al. 2007). 

The synoptic setting for this event consisted of a deep long-wave trough over the 

western U.S., a surface low over eastern Colorado, and a quasi-stationary front extending 

from the low across northwest Kansas into northeast Nebraska (Fig. 2.17). A dryline 

stretched generally southward across western Kansas, Oklahoma, and into west Texas. A 

very moist and unstable air mass was found east of the dryline, where values of surface-

based convective available potential energy (CAPE) were above 4000 J kg-1 across 

central Oklahoma and south of central Kansas.  Values of 0-3 km storm-relative 

environmental helicity (SREH) were in excess of 150 m2 s-2 throughout much of 

Oklahoma and Kansas, providing an environment favorable for supercell thunderstorms. 
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Fig. 2.17. NCEP NAM analysis valid at 00 UTC 5 May 2007 at (a) 500 hPa, (b) 850 hPa. 
Heights are shown as black contours (in decameters); and temperatures are shown by 
dashed red contours. 
 

 

Initial storm development occurred over the northern Texas panhandle/Oklahoma 

border around 2210 UTC on 4 May 2007. A complex cell evolution ensued in which 

several storm splits were observed in succession over the next 2 h.  As one of the storms 
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crossed the border into Kansas near 0040 UTC, it split with the right-moving storm 

evolving into the tornadic supercell thunderstorm that passed over Greensburg. This 

storm moved from 212(the direction with the north as 0 and clockwise turn, hereafter) 

at 13 ms-1 and developed its hook echo signature by 0106 UTC. Between 0130 UTC and 

0148 UTC, a strong middle-level mesocyclone was very clear and persistent in the data 

of Dodge City WSR-88D radar (not shown). The supercell was observed to take a classic 

hook echo shape by 0230 UTC as the strength of its rotation increased dramatically. The 

tornado that eventually produced the violent EF-5 damage at Greensburg was first 

observed near 0200 UTC (Lemon and Umscheid 2007). Forecasters at the National 

Weather Service Dodge City Weather Forecast Office issued a tornado warning with 30 

minutes lead-time for this event. 

Over the next hour from 0230 to 0330 UTC, this tornadic supercell thunderstorm 

(which we call the dominant storm) turned a bit more to the right, moving from 219 as 

the storm motion slowly decreased from 10 m s-1 to near 8 m s-1 (Lemon and Umscheid 

2007). In comparison, the group of non-supercell thunderstorms to the northwest of the 

dominant storm moved much faster at 23 m s-1 from 206.  While the violent EF-5 

tornado that hit Greensburg dissipated near 0305 UTC, a second strong EF-3 tornado 

developed near 0303 UTC, lasted for 65 min, and had a path length of over 43 km. This 

1-h period from 0230 to 0330 UTC is selected for study. During this period, the storm 

motion is fairly steady and strong tornadoes are observed throughout the period.  
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2.3.4 Experimental design 

KDDC

KTWX

KICT

KVNX

KTLXKAMA  

Fig. 2.18. The model domain with county boundaries. The six radars as well as their 
coverage circles are also shown.  

 
 

For this real data case experiment, we use 3-km grid spacing with 200x200 grid 

points in the horizontal. The model domain is shown in Fig. 2.18. The domain is selected 

with sufficient coverage to contain the principal features of interest while maintaining 

some distance between primary storms and the lateral boundaries. The model uses 47 

terrain-following vertical layers, with nonlinear stretching, via a hyperbolic tangent 

function, that yields a spacing of 100 m at the ground and expands to approximately 800 

m at the top of the domain. The ARPS 3DVAR technique is used to create rapid analysis 

cycles and the cloud analysis scheme follows the 3DVAR analysis step to assimilate the 
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radar reflectivity data. In addition, the mixing ratio of precipitation (including rain water, 

snow, and hail) and potential temperature are adjusted within the cloud analysis 

procedure based on reflectivity measurements. The other hydrometeor variables are not 

adjusted.  

In the first experiment (named as experiment VrOnly), only radial velocity 

observations from the six radars are used. The second experiment Vr&RF uses both 

radial velocity and reflectivity data.  For both experiments, data from six radars at Dodge 

City (KDDC), (Vance AFB, OK (KVNX), Wichita Kansas (KICT), Oklahoma City 

(KTLX), Amarillo TX (KAMA) and Topeka Kansas (KTWX) are used in the 3DVAR 

and cloud analysis system. Each experiment consisted of a 1-h assimilation period (from 

0130-0230 UTC) and a 1-h forecast period (0230-0330 UTC). The background and 

boundary condition came from an analysis from a mesoscale ensemble assimilation 

system (Stensrud and Gao 2010). While Stensrud and Gao (2010) performed a 3DVAR 

analysis only at one time level before the launch of the forecast, the present study uses an 

assimilation period that consists of thirteen analysis cycles at 5-min interval. A five 

minutes ARPS forecast follows each analysis. This process is repeated until the end of 

the 1-h assimilation period. From the final analysis, a 1-h forecast is launched.  
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Fig. 2.19. Observed radar reflectivity mosaic (dBZ) at 2km MSL from the KDDC, KICT, 
KVNX Doppler radars valid at (a) 0230, (b) 0240,  (c) 0250, (d) 0300, (e) 0315, and (f) 
0330 UTC 5 May 2007 over western Kansas. Solid lines indicate the locations of strong 
cyclonic rotations (see text for details). 
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The radar reflectivity mosaic from the aforementioned six WSR-88D radars is used 

for forecast verification. The evolution of the storm as indicated by the radar reflectivity 

mosaic at the 2 km MSL is shown in Fig. 2.19 from 0230 to 0330 UTC. The major 

supercell thunderstorm at southernmost side in Fig. 2.19 is the focus of this study. It 

produces the EF-5 tornado hitting the Greensburg area between 0245UTC~0305UTC. It 

bears a hook echo sign at 0230 UTC (Fig. 2.19a, NOTE: the hook echo is not as clear as 

shown in original radar PPI display due to data interpolation and multiple radar mosaic, 

however, it is still distinguishable). As the major storm reaches Greensburg, the hook 

echo signature becomes less prominent (Fig. 2.19c,d, it is also not easy to tell the hook 

echo in radar PPI display during this period) due to reflectivity wrapping up. During this 

period, the radar velocity observations (not shown here) show strong cyclonic rotation, 

indicating the location of the strong tornado. This strong rotation is illustrated by circles 

of solid lines in Fig 2.18. These solid lines are drawn based on the contour of the 

analyzed vertical vorticity using data from the six Doppler radars, which is of 0.003s-1 

and 0.006s-1 respectively. The major storm moves gradually towards northeast. After 

passing the town Greensburg, the storm maintains a very strong circulation and continues 

to move to the northeast. The second EF-3 tornado develops at the end of Greensburg 

tornado just northeast of the town (McCarthy et al. 2007).  

 

2.3.5 Results of experiments 

2.3.5.1 Experiment assimilating radial velocity data alone 

The experiment VrOnly assimilates alone the radial velocity observations from 

the aforementioned six NEXRAD radars. Fig. 2.20 presents for this experiment the 
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predicted radar reflectivity, horizontal wind vector and vertical vorticity as 2km MSL 

from 0230UTC to 0330UTC. It can be seen that at the end of 1-h data assimilation (Fig. 

2.20a), the major storm has been successfully developed although it is much weaker than 

observed reflectivity (Fig. 2.19a) at z=2km MSL. It is accompanied with a strong rotation 

as indicated by the contour of large vertical vorticity. The predicted major storm develops 

quickly in the following one hour. By 0250UTC (Fig. 2.20c), the reflectivity field has 

already shown a hook echo sign (although it is not very well defined), which is collated 

with a strong mesocyclone with vertical vorticity already over 0.01 s-1. The hook echo 

signature and the very strong rotation maintain until at least 0300 UTC in the forecast. 

After 0315UTC, the hook echo sign can barely be distinguished and the cyclonic rotation 

weakens gradually.  

During the whole 1-h forecast period, the predicted major storm moves slowly 

towards northeast. The location, moving path, and timing for the major storm are 

predicted very well. The storms northwest of the major storm is also reasonably captured 

during the period 0305 UTC~0330UTC. 

On the whole, this VrOnly experiment is able to capture the general evolution of 

the dominant storm that produces the Greensburg tornado during the 1-h forecast (Fig. 

2.20). This is quite inspiring. It means that with much more wind information observed 

by multiple radars we can reproduce a storm after 1-h data assimilation and then make a 

reasonable forecast. On the other hand, as indicated by Fig. 2.20a vs. Fig. 2.19a, it is also 

clear that assimilating only wind fields will delay the spin-up process of rainfall. If 

additional observations, such as reflectivity data, can be added into the assimilation run, 

the spin-up problem will be reduced. This will be discussed in the next section. 
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Fig. 2.20. Radar reflectivity (dBZ), horizontal winds, and vertical vorticity (contours 
staring at 0.005s-1 with an interval of 0.005s-1) at 2 km MSL from the VrOnly experiment 
during 0230~0330UTC 5 May 2007 over western Kansas. 
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2.3.5.2 Experiment assimilating both wind data and reflectivity data 

The Vr&Rf experiment assimilates both the wind data and reflectivity data. The wind 

data helps establish dynamic fields and recover other model fields. The reflectivity data 

helps reduce the rainfall spin-up problem. It is expected that this experiment will produce 

better results than the VrOnly experiment. 

Fig. 2.21 shows the simulated reflectivity, the horizontal wind vector, the vertical 

vorticity at 2km MSL for the 1-h forecast from this experiment. It can be seen that the 

reflectivity field at the end of this assimilation run looks very close to the observed 

reflectivity mosaic (Fig. 2.21a vs. Fig. 2.19a) while the VrOnly experiment only produce 

weak storm echo at the same time (Fig. 2.20a). Therefore, it is very clear that adding the 

reflectivity data in addition to the wind data greatly speeds up the rainfall spin-up. During 

this first half hour forecast period, the major storm moves slowly to the northeast with 

similar timing and location as demonstrated by the observation (Fig. 2.19). For the last 

half hour forecast period, the major storm moves a little bit faster than observation but 

still acceptable. Overall, the “Vr&Rf” experiment produces a reasonable forecast after 

one hour data assimilation. 
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Fig. 2.21. Similar as Fig. 2.20, but for the Vr&Rf experiment. 
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2.3.6 Summary and future plan 

Inspired by the findings in Section 2.2 of this study, the 4-5 May 2007 Greensburg, 

Kansas (KS), tornadic thunderstorm case is selected to study whether the wind fields can 

exert the greatest impact on storm-scale 3D variational data assimilation. Two data 

assimilation experiments are conducted. Their corresponding 1-h long forecasts are 

evaluated by comparing them with reflectivity mosaic derived from radars.  

It is shown that assimilating wind fields observed by six radars can rebuild the storm 

after sixty minutes of intermittent assimilation and reasonably predict the general 

evolution of the dominant storm cell that produced the EF-5 Greensburg tornado. This 

success is much encouraging considering the general failure of single radar data 

assimilation of radial velocity alone in previous studies. This confirms that more accurate 

wind fields can lead to better performance in data assimilation and the following forecast. 

On the other hand, assimilating reflectivity data in addition to wind data can help reduce 

the spin-up problem. 

The above conclusions are mainly based on single real case study. While these 

findings can provide a guide in the design/improvement of storm-scale observing systems 

and storm-scale data assimilation configurations, it should be cautious to apply them in 

general. More case studies on this issue will be explored in the future. 
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Chapter 3 * Impacts of Beam Broadening and Earth Curvature on 

Storm-scale 3D Variational Data Assimilation of Radial Velocity with 

Two Doppler Radars 

3.1  Introduction 

The operational WSR-88D Doppler radar network (NEXRAD) is an important tool 

for real-time detection and warning of hazardous weather (Crum and Alberty 1993; Crum 

et al. 1998; Serafin and Wilson 2000). It is also an essential observing system for 

initializing non-hydrostatic, storm-resolving (i.e., horizontal grid spacing on the order of 

1 km) numerical weather prediction (NWP) models (e.g., Droegemeier 1990; Lilly 1990; 

Droegemeier 1997).  To assimilate these radar data into NWP models, it is necessary to 

accurately determine the spatial locations of individual radar measurements. Because the 

propagation path of the electromagnetic waves can be affected by the refractivity of the 

atmosphere, the propagation path or the ray path is usually not a straight line. A suitable 

ray path equation is therefore needed. The local direction of the ray path also affects the 

radial velocity forward operator that projects the Cartesian velocity components on the 

model grid to the local radial direction in data assimilation systems.  

Most early radar data assimilation studies used relatively simple ray path equations in 

the forward operator formulation which are based on the Cartesian geometry, essentially 

assuming a flat earth (e.g., Sun et al. 1991; Qiu and Xu 1992; Xu et al. 1995; Qiu and Xu 

                                                 
* This Chapter is published as: Ge, G., J. Gao, K. Brewster, and M. Xue, 2010: Impacts of Beam 

Broadening and Earth Curvature on Storm-Scale 3D Variational Data Assimilation of Radial Velocity with 

Two Doppler Radars. Journal of Atmospheric and Oceanic Technology, 27, 617-636. 
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1996; Sun and Crook 1997; Gao et al. 1998; Sun and Crook 1998; Xu et al. 2001a; 

Weygandt et al. 2002b, 2002a; Shapiro et al. 2003; Gao et al. 2004). Brewster (2003) 

applied complete ray path equations into the ARPS (Advanced Regional Prediction 

system, Xue et al. 2000; Xue et al. 2001; Xue et al. 2003) Data Assimilation System 

(ADAS) and phase correction technique. Similar ray path equations were applied into the 

3.5dVar radar data assimilation system (Gu et al. 2001; Zhao et al. 2006) developed for 

the Coupled Ocean/Atmosphere Mesoscale Prediction System (Hodur 1997). However, 

these previous studies did not investigate the impact of the ray path equations on the 

radar data assimilation systems. Gao et al. (2006, hereafter Gao06) have shown that using 

simplified radar ray path equations introduces errors that are significant for ranges 

beyond 30 km. In that paper, a set of four-thirds earth-radius ray path equations is 

recommended, especially at low elevation angles. However, Gao06 mainly addresses the 

error in physical location of individual radar measurement. It is also of interest to study 

how, and to what extent, the neglecting of earth curvature will affect the results of storm-

scale radar data assimilation. 

In order to compute most accurately the model counterpart of radial wind, one must 

integrate over all possible model grid points within the radar beam main lobe, which 

broadens with range. Most radar data assimilation studies do not consider this beam 

broadening effect. Wood and Brown (1997) introduced a power gain weighted average in 

the radar forward observation operator in their study on the effects of radar sampling on 

velocity signatures of mesocylones and tornadoes. Sun and Crook (2001) incorporated a 

similar beam broadening equation in their 4DVAR radar analysis system. Salonen (2002) 

approximated the beam broadening effect with a Gaussian function (Probert-Jones 1962) 
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in the vertical direction and demonstrated slightly positive impact on radar analysis using 

the High Resolution Limited Area Model (HIRLAM) 3DVAR system. Xue et al. (2006) 

and Tong (2006) used a power-gain-based sampling in vertical direction to compute the 

model counterpart of radial velocity in their EnKF work. All these treatments are more 

reasonable since they are more close to the nature of the radar measurement. Caumont 

and Durocq (2008) showed that neglecting the beam broadening could cause large errors 

at distant gates in the simulation of radar data. However, a detailed study of the effect of 

beam broadening in storm-scale data analysis and assimilation has not yet been 

investigated.  

In this study, the effect of earth curvature and beam broadening in radar data 

assimilation is investigated using an idealized supercell tornadic thunderstorm. The 

ARPS 3DVAR system, described in Gao et al. (2002; 2004) and Hu et al. (2006b) is used 

for this purpose. The ARPS 3DVAR system is capable of analyzing radar radial velocity 

data along with conventional observations. It is usually used together with the cloud 

analysis system to initialize hydrometeor related variables and provide a latent heating 

adjustment. For simplicity in studying the radial velocity effects, in this paper only the 

simulated radial winds derived from an idealized thunderstorm are used and the cloud 

analysis is not used. In the ARPS 3DVAR system, the mass continuity weak constraint is 

included in the cost function that serves to link three wind components together and helps 

improve wind analysis.  

This paper is organized as follows. In Sections 3.2 and 3.3, we will briefly introduce 

the radar forward observation operator and the ARPS 3DVAR system respectively. In 
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Section 3.4, the model configuration and experiment design are discussed. The results are 

presented in Section 3.5, and summary and discussion in Section 3.6.    

3.2  The radar forward observation operator 

Under the assumption that the refractivity is a function only of height above mean 

sea level, Doviak and Zrnic (1993) present a formulation that expresses the ray path in 

terms of a path following a curve of a sphere of radius, 

 1e edn
dh

a
a k a

a
 


                                                    (3.1) 

 
where a is the earth’s radius, ek  is a multiplier which is dependent on the vertical 

gradient of refractive index of air dn
dh , h is the height above the radar altitude, n is the 

refractive index of air. The assumptions under which the eq. 3.1 is reached also include: 1) 

The radar ray is launched at a low elevation angle, which is usually the case with weather 

radars; 2) The refractive index n is close to 1; 3) h<<a; 4) dh/ds <<1, where s is the 

surface range (distance along the earth’s surface).  

The refractive index of air, n, is a function of its temperature, pressure and humidity. 

It is convenient to use the quantity N called radio refractivity instead of n. N represents 

the departure of n from unity in parts per million and its variations can be considered 

more conveniently. N has a value of about 300 (at the surface). N is usually taken, subject 

to certain assumptions, as (Bean and Dutton 1968), 

6 5 2( 1) 10 77.6 / 3.73 10N n P T eT                                              (3.2) 

where P is air pressure in hPa (including water vapor pressure), e is water vapor pressure 

in hPa, and T is air temperature in degrees K. In the above equation, the first term on the 

right hand side is known as the dry term, the second term is the moist term. The value of 
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N can be computed from measurement of P, T, and e. If h is limited to the lowest 20 km 

of the atmosphere and dn
dh  is -1/(4a) in the lower atmosphere, ek  will equal to 4/3 

(Doviak and Zrnic 1993). This is often referred to as the “four-thirds earth radius model”.   

The following two equations relate h and the surface range (distance along the 

earth’s surface), s, to radar-measurable parameters, the slant path, r and radar elevation 

angle, e (Doviak and Zrnic 1993), 











 

hak

r
aks

e

e
e

cos
sin 1                                                                    (3.3) 

 
 

1
22 22 sine e e eh r k a rk a k a                                                  (3.4) 

To consider the curvature of the Earth, the radar forward observation operator can be 

written as the following equation: 

' ' 'cos sin cos cos ( ) sinr e e t ev u v w w                                           (3.5) 

where   is radar azimuth angle, tw is the terminal velocity of precipitation, and '
e  

includes the effect of the curvature of the earth as the following: 

' 1tan [( cos /( sin )]e e e e er k a r                                                      (3.6) 

In this study, only the effect of beam broadening in the vertical direction is 

considered. The reason is as the following. In storm-scale NWP, the horizontal resolution 

is normally between 1 km and 3 km and a 1  half-power beam width will measure about 

3490 m at a surface range of 200 km. So a beam lobe at a surface range of 200 km and 

gate spacing less than 1-km will enclose only 1 to 3 horizontal grid points, even at 1-km 

grid spacing, which we judge to be too few to have a material difference. However, the 

vertical resolution of NWP models typically ranges from 20 to 500 m and a beam lobe at 
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a range of 200 km can span more than seven vertical grid points, much greater than the 

two grid points that might be used to compute the model counterpart of radial wind with 

linear interpolation.  

At the same time the height of the lowest ray above the ground will increase rapidly 

with range (Gao et al. 2006). At a surface range of 100 km, the height of the center of a 

0.5-degree ray above the ground is about 1.5 km and at 200 km it is about 4 km. So there 

may be little information observed of the boundary layer, especially far from the radar. 

Considering beam broadening in the radar forward observation operator may also spread 

information below the center of the lowest ray.  

Following Rihan et al. (2008), the observation operator for mapping data from 

multiple vertical model levels onto elevation angles is formulated as: 

   , ( ) /r e e r rV H V GV z G z                                              
(3.7) 

where ,r eV  is the radial velocity on an elevation angle, eH is the radar forward 

observation operator, rV  is the model counterpart of radial velocity, z  is the vertical 

model grid spacing. G describes the two-way power gain distribution within the radar 

beam and is formulated as G=
2 24ln 4 /e    (Wood and Brown 1997) with   as the distance 

from the center of the radar beam in radians and  as the one degree beam width. The 

summation is over vertical model grid points enclosed by the half-power beam lobe. 

3.3 The ARPS 3DVAR system 

Following Gao et al. (2004), the standard cost function of 3DVAR can be written as, 

         1 11 1
( )

2 2

T Tb b o o
cJ H H J             x x x B x x x y R x y x          (3.8) 
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where the first term on the right hand side measures the departure of the analysis 

vector, x, from the background vector, xb, weighted by the inverse of the background 

error covariance matrix B. In the current ARPS 3DVAR system, the analysis vector x 

contains the three wind components (u, v, and w), potential temperature (θ), pressure (p) 

and water vapor mixing ratio (qv). The second, observation term, measures the departure 

of the analysis from the observation vector, yo. In this study, yo only includes radar radial 

velocity data. The analysis is projected to the observation space by the forward operator 

H which is defined by equations (3.1) ~ (3.7) and an interpolation operator from model 

grid points to radar observation locations. The observation term is weighted by the 

inverse of observation error covariance matrix R that includes both instrument and 

representativeness errors. Because only radial velocity data are used in the analysis 

system and there are no cross-correlations between variables in the B matrix, only wind 

components will be updated during the minimization process.  Term ( )cJ x  in Eq. (3.8) 

represents dynamic or equation constraints.  

By defining  b Bv x x , the cost function is changed into incremental form: 

   1 2 1 1 21 1
( ) ( )

2 2

TT
inc cJ J    v v v HB v d R HB v d v                            (3.9) 

where H is the linearized version of H and  bo H xyd  . In the current version of 

ARPS 3DVAR system, the spatial covariances for background error are modeled by a 

recursive filter (Purser et al. 2003b, 2003a). The corresponding covariance matrix, R, is 

diagonal, and its diagonal elements are specified according to the estimated observation 

errors (1m s-1 in this study).   
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In the ARPS 3DVAR, the mass continuity equation is imposed as a weak constraint. 

This constraint builds up the relationship among the three wind components. Gao et al. 

(1999; 2004) found that this constraint is very effective in producing suitable analyses of 

vertical velocity. When a stretched grid strategy is used in the vertical direction, a special 

treatment (Hu et al. 2006b), which assigns different weighting coefficients in horizontal 

and vertical direction, is needed to apply this constraint. More recently, the modified 

ARPS model equations are included as weak constraints in the 3DVAR scheme. These 

newly introduced constraints couple the wind components with thermodynamic variables 

(Ge and Gao 2007).  In this study, for simplicity, only the mass continuity constraint is 

included. 

3.4 Experimental design 

 In this study, we evaluate the impact of beam broadening and earth curvature on data 

assimilation system using simulated data. Such simulation experiments are usually 

referred to as observing system simulation experiments (OSSEs). The ARPS model is 

used in a 3D cloud model mode. The 20 May 1977 Del City, Oklahoma tornadic 

supercell storm is used to conduct several series of experiments. This storm has been 

thoroughly studied by multiple Doppler analysis and numerical simulation (Klemp et al. 

1981; Ray et al. 1981; Klemp and Rotunno 1983). 

The model is configured as the following: 67  67  35 grid points and 

1km 1km 0.5km grid intervals for the x, y, and z directions, respectively, so as to 

establish a physical domain of 64 64 16 km. The simulation starts with a modified 

sounding (as in Klemp et al. 1981) which favors the development of a supercell 

thunderstorm. The thermal bubble has a 4 K perturbation, and is centered at x=48 km, 
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y=16 km and z=1.5 km with the lower-left corner of the domain as the origin. The radius 

of the bubble is 10 km in the x and y directions and 1.5 km in the z direction. The three-

category ice microphysical scheme of Lin et al. (1983) is used together with a 1.5-order 

turbulent kinetic energy subgrid parameterization. Open boundary conditions are used for 

the lateral boundaries and rigid wall conditions for the top and bottom boundaries. An 

upper-level Rayleigh damping layer is also included to inhibit wave reflection from the 

top of the model. 

 The simulation runs for 3h. The initial convective cell strengthens over the first 20 

min and begins to split into two cells at around 1h. To keep the right-moving storm near 

the center of the model domain, a mean storm speed (U=3 m s-1, V=14 m s-1) is 

subtracted from the sounding. At about 2h into the simulation, the right mover is still near 

the center of the domain as expected and the left mover is located at the northwest corner. 

Fig. 3.1a and Fig. 3.2a show horizontal and vertical cross sections of simulated wind, 

vertical velocity at 2h respectively (vertical cross section is plotted through line A-B in 

Fig. 3.1a). A strong rotating updraft (with maximum vertical velocity exceeding 29 m s-1) 

and associated low-level downdraft are evident near the center of the domain. The updraft 

tilts eastward in the upper part of the troposphere. The evolution of the simulated storm is 

qualitatively similar to that described by Klemp and Wilhelmson (1981). After 2 h, the 

major storm gradually moves a little bit toward the southeastern corner of the model 

domain, and remains a very strong supercell structure until the end of simulation at 3 h 

(Fig. 3.7a-c).   
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Fig. 3.1. Perturbation horizontal winds (vectors, m s-1) and vertical velocity w (contours, 
m s-1) at t=120 min and 3.5 km AGL for (a) truth simulation; (b) CNTL1_60; (c) 
NoBB1_60; (d) NoCV1_60. The w contour starting from 5 m s-1 with an interval of 5 m 
s-1.   
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Fig. 3.2. Total u-w wind vectors and vertical velocity (contours) of the 20 May 1977 
supercell storm at t=120 min and y=22.5 km (along the line A-B in Fig. 3.2a) for (a) truth 
simulation; (b) CNTL1_60;  (c) NoBB1_60; (d) NoCV1_60. 

 

 

 

Four series of pseudo radar radial observations from two Doppler radars are obtained 

by sampling the evolution of this simulated storm every 5 min from 2h to 3h using radar 
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forward operators expressed in eq. (3.1)-(3.7). The first series of simulated data are 

obtained from the simulated wind field fixed at t=2 h, as a function of various radar 

locations. Of the two radars, one is put at x= 33 km relative to the origin of model 

domain (lower left corner), while its y coordinate is varied in increments of 10 km from 

y=-190 km to y=10 km. A second radar is set at position y=25 km while its x coordinate 

is varied from x=0 km to x= -200km in intervals of 10km. In this way, we are able to test 

the impact of the beam broadening and the earth curvature as a function of distance from 

the center of the storm ranging from about 20 km to 220 km. The center of the storm is 

estimated to be (32.5km, 22.5km). The second series of pseudo observations are sampled 

in a similar way to the first one, except that the refractive index gradient dn/dh is no 

longer -1/(4a) (about -39.2 10-6 km-1)  in Eq. (3.1) for the “four-thirds earth radius 

model”. Instead, the dn/dh takes the value of -1010-6 km-1, -7010-6 km-1, -10010-6 

km-1, -13010-6 km-1 respectively, representing most possible cases in the atmosphere.  

The third series of radial velocity observations are obtained every 5 minutes from 

model simulation between 2h and 3 h using the same forward operator, but two radars are 

at fixed locations (33km, -40km) and (-30 km, 25km) respectively. In this case, the 

surface range between the storm center and either of the radars is about 60 km. The 

fourth series of pseudo observations are sampled in a similar way to the third series, for 

two radars at fixed locations (33km, -130km) and (-120km, 25km). In this case, the 

distance between the storm center and either of the radars is about 150 km. 

The elapsed times for the radars to obtain the volume scans are neglected, and thus 

we assume that the radial wind observations are simultaneous. For simplicity, the two 

radars will cover the entire horizontal physical grids (i.e. 64 64 km) which assumes that 
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the radars sweep almost continuously in horizontal direction. The elevation angles are 

0.5 ,0.9 ,1.3 , 2.4 ,3.1 , 4.0 ,5.1 ,6.4 ,7.5 ,8.7 ,10.0 ,12.0 ,16.7 ,19.5               (same as the WSR-

88D convective precipitation volume coverage pattern (VCP) 11). The simulated data are 

only specified in precipitation regions (where reflectivity is greater than zero dBZ). In 

order to simulate the radar measurement statistical error, 1m s-1 random error (white noise) 

is added to the radial velocities in the pseudo observation data.                          

Corresponding to the first series of radial wind observations, three categories, 21 

experiments each category, of data analysis experiments (see Table 3.1, which lists all 

experiments ) will be conducted at t=2 h with varied surface ranges between radar 

location and storm center. In the first category of experiments, both the effect of beam 

broadening and the effects of earth curvature are considered using the radar forward 

observation operator as defined in Eqs. 1-7. They will be referred as CNTL1 experiments 

(label 1 means at single time level). In the second category of experiments, the effect of 

beam broadening is not considered and Eq. (3.7) will be replaced with a simple tri-linear 

interpolation scheme. It will be referred as NoBB1 experiments. In the third category of 

experiments, the effect of earth curvature will not be considered and Eq. (3.3) ~ (3.6) will 

be replaced with the commonly used Cartesian radar forward operator (Gao et al. 1999). 

It will be referred as NoCV1 experiments. The distance between the storm and the radar 

varies from 20 km to 220 km at an interval of 10 km for both radars. Therefore, each 

individual experiment will be referred by its category name followed by the distance in 

km, as described above, e.g. CNTL1_60, NoBB1_60, NoCV1_60, etc. Corresponding to 

the second series of pseudo observations, four categories, twenty-one experiments each 

category, of data analysis experiments are performed (see Table 3.1). The settings are 
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similar to that in CNTL1 experiments except that the refractive index gradient dn/dh is no 

longer -1/(4a). The four categories of experiments are named DnDh-10, DnDh-70, DnDh-

100, and DnDh-130, respectively, according to the value of dn/dh used. 

 

Table 3.1. List of data analysis/assimilation experiments 

 
aCNTL means both the effects of beam broadening and earth curvature are considered; 
 NoBB means the effect of beam broadening are neglected; 
 NoCV means the effect of earth curvature are neglected. 

 

 

Corresponding to the third series of pseudo observations, three intermittent data 

assimilation experiments (see Table 3.1) are performed with an interval of 5 minutes and 

a window covering t=2 h to t=3 h of the model simulation. For these three experiments, 

the distance from the radar to the storm center is about 60 km when the data assimilation 

experiments begin. These three experiments are referred as CNTLM_60, NoBBM_60, 

NoCVM_60 experiments with similar literal meaning as the above (where the label M is 

added to denote multiple time levels). Corresponding to the fourth series of pseudo 

Namea Radar distance Description 

CNTL1_xxx 
20km~220km at an interval of 10km 

(xxx is the radar distance in km) 
one-time analyses at t=2h 

    (21 experiments for each type) 
NoBB1_xxx 
NoCV1_xxx 
CNTLM_60 

60km 
One hour assimilation from t=2h~3h 

at an interval of 5min 

NoBBM_60 
NoCVM_60 
CNTLM_150 

150km NoBBM_150 
NoCVM_150 

DnDhxxx 
20km~220km at an interval of 10km 

(xxx is the dn/dh value) 

one-time analyses at t=2h 
    (21 experiments for each dndhxxx 

experiment) 
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observations, three more intermittent data assimilation experiments (see Table 3.1) are 

performed. The setting is same as above, but the distance between radar location and 

storm center is changed to 150 km at the beginning of data assimilation. Similarly, these 

three more experiments are named CNTLM_150, NoBBM_150, and NoCVM_150. 

These six experiments are designed to assess the impact of the beam broadening and the 

earth curvature on radar data assimilation over a data assimilation window while radar 

sites are near, or far from a storm. There are 13 assimilation cycles with 5 minute interval 

in these 6 experiments. The ARPS 3DVAR system is used to obtain the model initial 

condition first, and then the ARPS system runs for a five-minute forecast starting from 

this initial analysis. This intermittent assimilation cycle is applied every five minutes 

until the end of assimilation period.  

To compare the accuracy of the analysis from different experiments, the RMS error 

statistics of the horizontal wind components (Vh) and scalar model variables ( s ) between 

the experiments and the truth simulation run are computed using the following equations: 

2 2

1 1
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where N is the total number of 3-dimensional grid points used in the calculation, and the 

subscript simu stands for the data from the simulation run. The computation of the RMS 

error statistics is only done over model grid points where the reflectivity (estimated from 

the local hydrometeor mixing ratios) of the simulation run is greater than 5 dBZ. 
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3.5 Results of experiments 

3.5.1 The impact on 3DVAR wind analysis at t=2h time level 

As stated above, the purpose of first series of experiments is to test the impact of 

beam broadening and earth curvature on 3DVAR wind analysis at a single time level. 

The variations of RMS errors for NoBB1 and NoCV1 are plotted in Fig. 3.3 along with 

that for CNTL1. The horizontal section at z=3.5km AGL and the vertical cross section at 

y=22.5km of wind fields for the truth simulation, CNTL1_60, NoBB1_60, NoCV1_60 

and CNTL1_150, NoBB1_150, NoCV1_150 are plotted in Fig. 3.1, 3.2, 3.4 and 3.5.  

We first discuss the impact of beam broadening. The RMS error of the horizontal 

winds and the vertical velocities plotted as a function of the distance for both CNTL1 

(solid lines) and NoBB1 (dashed lines) experiments are shown in Fig. 3.3. It is found that 

the RMS error differences for both horizontal winds and vertical velocities between these 

21 CNTL1 experiments and their corresponding NoBB1 experiments gradually increase 

as the distance between the storm center and radar locations increase. These differences 

are less than 0.35 m s-1 for horizontal winds and less than 0.1 m s-1 for vertical velocities 

within the range of 60 km.  Beyond 60 km, the differences for horizontal winds become 

more noticeable as the range increases, reaching over 1 m s-1 at the range of 220 km, 

while the difference for vertical velocity shows little change. This means that additional 

errors due to the neglect of beam broadening are gradually introduced in NoBB1 

experiments. 
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Fig. 3.3. The variation of RMS errors with the distance between the center of the storm 
and radar locations, for (a) horizontal wind components, and (b) vertical velocity. The 
solid lines are for CNTL1 experiments, the dashed lines are for the NoBB1 experiments, 
and the dotted lines are for the NoCV1 experiments. 
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Fig. 3.4. Same as Fig. 3.1, but for (a) truth simulation; (b) CNTL1_150; (c) NoBB1_150; 
(d) NoCV1_150. 
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Fig. 3.5. Same as Fig 3.2, but for (a) truth simulation; (b) CNTL1_150; (c) NoBB1_150; 
(d) NoCV1_150. 
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The variation in the RMS errors for horizontal winds and vertical velocities as a 

function of distance for experiment NoCV1 is also plotted in Fig. 3.3 in dotted lines. It is 

easily identified that the neglecting of the earth curvature can lead to very large RMS 

errors in the analysis of horizontal winds, especially beyond 60 km. It exhibits an 

additional 7.1 m s-1 RMS error of horizontal winds compared to CNTL1 experiment at 

the range of 220 km (Fig. 3.3a). The RMS error differences for vertical velocities 

between CNTL1 and NoCV1 experiments are evident when the surface range is over 150 

km (Fig. 3.3b). Therefore, in the sense of the evolution of RMS errors, we can conclude 

that overlooking the earth curvature has a much greater negative impact on variational 

wind analysis than the neglect of beam broadening.  

As the RMS statistics suggest, the differences in the 3-D wind fields among all three 

categories of experiments CNTL1, NoBB1 and NoCV1 should be very small when the 

distance between the storm and radars is less than 60 km. Fig. 3.1 and Fig. 3.2 confirm 

this conclusion. Fig. 3.1 shows that the horizontal wind and vertical velocity fields at 3.5 

km AGL for the truth simulation and the three experiments, CNTL1_60, NoBB1_60, and 

NoCV1_60, where the radar is 60km from the storm. Though the 3DVAR analysis is not 

perfect, the horizontal cyclonic rotation associated with the right and left movers are 

evident in all three experiments (Fig. 3.1b, c, d). They are all pretty close to the truth 

simulation (Fig. 3.1a). The analyzed maximum vertical velocities (Fig. 3.2b, c, d) for all 

three categories of experiments are generally several meters per second weaker than the 

truth simulation, but the pattern is nearly the same for all three experiments. So the error 

from neglecting both beam broadening and earth curvature at this range is pretty small. 
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When the distance between the storm and radar location is 150 km or greater, the 

differences among these experiments become larger and can no longer be ignored. As an 

example, horizontal cross sections at z=3.5 km and vertical cross sections are plotted as 

in Fig. 3.4 and Fig. 3.5 for the surface range of 150 km (the truth simulation is re-plotted 

for ease of comparison). It is clearly evident that the rotation signature near the center of 

the storm in Fig. 3.4b for CNTL1_150 is stronger than that in Fig. 3.4c for NoBB1_150. 

In addition, Fig. 3.5b shows a much stronger and deeper rotation updraft than Fig. 3.5c. 

The maximum vertical velocity in Fig. 3.5b is 21.31 m s-1, much closer to the simulation 

result (as shown in Fig. 3.5a) than that in Fig. 3.5b which is only 16.60 m s-1. Apparently, 

CNTL1_150 experiment does a better job for the wind analysis than NoBB1_150 in 

which no effect of beam broadening is considered.   

For experiment NoCV1_150 in which the influence of the earth’s curvature is not 

considered, Fig. 3.4d shows that the perturbation horizontal winds are unexpectedly 

strong and quite noisy. The signatures of cyclonic rotation within each of the cells are not 

so well analyzed. Although the strength of the major updraft in Fig. 3.5d is well captured, 

just as in Fig. 3.5b of CNTL1_150,  the updraft in Fig. 3.5d is incorrectly positioned in 

the vertical direction, about 1 km below than that in Fig. 3.5a. All these distorted features 

are evidently caused by the neglect of the effect of the earth curvature in the radar 

forward observation operator.  

It should be noted that the wind analysis generally becomes worse even in 

CNTL1_150km experiment because of the poorer resolution in the data at that distance. 

It is demonstrated that the impacts of both the beam broadening and earth curvature 

are dependent on the surface range between the center of the storm and the radar location. 
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It appears that within a range of 60 km, both the impacts of beam broadening and earth 

curvature can be neglected. As the distance increases beyond 60 km, more and more 

additional errors are introduced into the wind analysis from both earth curvature and 

beam broadening effects. Specifically, the neglect of the earth curvature exhibits much 

more negative impact than the neglect of the beam broadening. When the distance to the 

storm exceeds 150 km, overlooking the earth curvature and the beam broadening will 

both bring much more obvious negative impact on the 3-dimensinal wind analysis.  So 

the Cartesian ray path equation and a simple interpolation are not recommended when the 

distance to the storm is greater than 150 km. 

The “four –thirds earth radius model” assumes that dn/dh equals to -1/(4a), about -

39.210-6 km-1, for the standard atmosphere. However, dn/dh can deviate from this value 

more than 10010-6 km-1 in storm favoring environments (Gao et al., 2006). The impact 

of refractivity gradient with different dn/dh is investigated now through four categories of 

data analysis experiments as described in previous section (Section 3.4). The RMS error 

of horizontal wind for the experiments CNTL1, DnDh-10, DnDh-70, DnDh-100, and 

DnDh-130 are plotted in Fig. 3.6. It is shown that the impact of using different values of 

dn/dh instead of -1/(4a) for standard atmosphere is rather small. The additional RMS 

error due to the use of the “fourth-thirds earth radius model” is generally less than 0.42 m 

s-1 within a range of 100 km.  The impact will gradually increase as the range increases.  

When the radar is very far from the storm (beyond 190km) and the absolute value of 

dn/dh is very large (more than 13010-6 km-1),  the  additional RMS error is over 1 m s-1.  

The additional RMS error of vertical velocity (not shown) introduced by the use of 

dn/dh=-1/(4a) are all less than 0.2 m s-1. The 3D wind plots (not shown) also confirmed 
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that above statements. It is concluded that the impact of refractive index can be neglected 

for most applications.  Because of the impact is so small, this effect will not be discussed 

in the following intermittent data assimilation experiments.  

 

Fig. 3.6. The variation of RMS errors with the distance between the center of the storm 
and radar locations for horizontal wind. The solid lines are for CNTL1 experiments, the 
dot lines are for DnDh-10 experiments, the dot-dashed lines are for DnDh-70 
experiments, the dashed lines are for DnDh-100 experiments, the short dot-dashed lines 
are for the DnDh-130 experiments. 

 

3.5.2 The impact on radar data assimilation cycles 

To investigate how the errors introduced by neglecting of the beam broadening and 

the earth curvature are accumulated during an intermittent data assimilation and 
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investigate how the retrievals of other model variables, such as potential temperature, 

moisture are impacted, two time series of data assimilation with 5 minutes interval are 

performed during a one-hour-long data assimilation period. As discussed in Section 3.4, 

first three intermittent data assimilation experiments referred as CNTLM_60, 

NoBBM_60, NoCVM_60 are conducted using data sampled from t=120 min to t=180 

min of model simulation with a radar distance of 60 km when the data assimilation 

experiments begin. Three more experiments CNTLM_150, NoBBM_150, NoCVM_150 

are conducted for the radar distance of 150 km at the beginning of data assimilation. The 

results from these six experiments are discussed in the following. 

Fig. 3.7 shows the horizontal winds, perturbation potential temperature and 

reflectivity at 250 m AGL (first model level above surface) and Fig. 3.8 shows the 

horizontal wind and vertical velocity fields at 3.5 km AGL, at 140, 155 and 170 min of 

model time. Recall that the model assimilation begins at t=120 min.  They are shown for 

the truth simulation, cycled 3DVAR assimilation for experiments CNTLM_60, 

NoBBM_60 and No_CVM_60, as described in above. For all three experiments, Fig. 

3.7d, g, j show that after 4 cycles at t = 140 min, the assimilation has retrieved some weak 

potential temperature perturbations. Though no reflectivity is assimilated, the model 

established the reflectivity pattern quite similar to the truth 

simulation, although covering a smaller area after 20 minutes of assimilation. A small 

positive temperature perturbation is found where there should be cooling (Fig. 3.7d, g, j). 

At the 3.5 km level (Fig. 3.8d, g, j), an updraft is established well at the correct location, 

and its strength and structure are quite similar to the truth (Fig. 3.8a). After three more 
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Fig. 3.7. The total u-v wind vector, perturbation potential temperature (contour at every 1K) and 
reflectivity (colored) at z=250m AGL and t=140min, 155min, 170min respectively. (a), (b), (c) 
are for truth simulation, (d), (e), (f) are for CNTLM_60, (g), (h), (i) are for NoBBM_60, (j), (k), 
(m) are for NoCVM_60. Solid contour for positive, and dashed contour for negative. 
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Fig. 3.8. The perturbation u-v wind vector, vertical velocity (contour at every 5 m s-1) at 
z=3.5km AGL and t=140min, 155min, 170min respectively. (a), (b), (c) are for truth 
simulation; (d), (e), (f) are for CNTLM_60; (g), (h), (i) are for NoBBM_60; (j), (k), (m) 
are for NoCVM_60.  Solid contour for positive, and dashed contour for negative. 
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Fig. 3.9. The evolution of the RMS errors with time for different model variables. The 
solid lines are for CNTLM_60, the dashed lines are for NoBBM_60, and the dotted lines 
are for NoCVM_60. 

 

 



87 

analysis cycles at t = 155 min, the low-level flow immediately underneath the storm cells 

becomes closer to the truth (Fig. 3.7e, h, k vs. Fig. 3.7b) but the area of outflow and cold 

pool on the southwest side remain smaller than the truth. At the 3.5 km level, the 

perturbation horizontal winds and the updrafts are well captured in all three experiments 

by t= 155 min (Fig. 3.8e, h, k vs. Fig. 3.8b).  

By t = 170 min, the analysis is further improved. In fact, by this time, there are no 

significant differences from the truth in either the low-level and mid-level fields (Fig. 

3.7f, i, m and Fig. 3.8f, i, m). General storm structures including the precipitation pattern 

are well retrieved during this 1h data assimilation in all three experiments though the 

results from NoCVM_60 are not quite as good. This reinforces that the impacts of beam 

broadening and earth curvature on radar data assimilation cycles for retrieving other 

model variables from the radial wind  of two radars are generally small when the storm is 

not far from two radars. 

Although the RMS error is generally not well suited as a verification metric for 

storm-scale phenomena, we use it here for comparison among different experiments 

while also visually comparing plotted fields to verify the result. The RMS errors for 

several analyzed fields are shown in Fig. 3.9. The RMS errors for Vh components 

decrease with time, but very slowly. The variations of  RMS errors for w are not stable, 

possibly because of small phase or position errors. The RMS errors for ' decrease for the 

first 40 minutes of assimilation, then increase with time again. Only the errors for qv 

decrease nearly monotonically with time. The qv RMS error is reduced to 0.28 g kg-1 in 

CNTLM_60, and to 0.31, 0.35 g kg-1 in NoBBM_60 and NoCVM_60 respectively.  Fig. 

3.9 generally shows that the RMS errors of Vh, w, ', and qv stay very close for all three 
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experiments though NoCVM_60 has slightly larger errors in Vh. The RMS errors again 

suggest that the effect of beam broadening and earth curvature is generally small when 

the storm is not far from radar. 

We now turn to the results for experiments CNTLM_150, NoBBM_150 and 

NoCVM_150. Fig. 3.10 and Fig. 3.11 show that, in general, the results are significantly 

worse in all three experiments than the prior 60 km experiments. The overall storm 

structures are poorly resolved compared to CNTLM_60, NoBBM_60 and NoCVM_60. 

However, among the three experiments for the range of 150 km, the overall structure of 

the storm for CNTLM_150 is the best and quite similar to those of the truth toward the 

end of the assimilation.  

In experiment NoBBM_150, the precipitation area is pretty small and the cold pool is 

very weak at 140 min, i.e. after 20 min of assimilation (Fig. 3.10g), but the pattern of 

horizontal winds and strength of updraft at the 3.5 km level is similar to the truth (Fig. 

3.11g vs. Fig. 3.11a ). At 155 min, the analysis looks better, but both the horizontal wind 

and vertical velocity field look noisy, and there exist several small centers for positive, or 

negative contours that are not supported by the truth simulation (Fig. 3.11h vs. Fig. 

3.11b).  At the end of the assimilation (Fig. 3.10i and Fig. 3.11i), the reflectivity and 

updraft patterns look much closer to the truth. Clearly, at this very large radar distance, 

the neglect of beam broadening worsens the assimilation results. But the impact is limited 

and the internal structures of thunderstorms can still be obtained well by the end of 1h 

assimilation. 

When the effect of earth curvature is not considered at the range of 150 km, the 

analyzed low-level cold pool, gust front, and precipitation pattern differ markedly from 
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those of the truth (Fig. 3.10j,k,m vs. Fig. 3.10a,b,c) and from the control assimilation at 

the same radar distance (vs. Fig. 3.10d,e,f). At t=155 min, the mid-level updraft appears 

broader and the pattern of horizontal flow is significantly different from the truth. At 

t=170 min, the reflectivity core becomes distorted and the hook echo is poorly defined 

after 50 min assimilation (Fig. 3.10m vs. Fig. 3.10c).  Also at this time, there are a few 

spurious updrafts within the analysis domain (Fig. 3.11m). Overall, the analysis is 

significantly worsened when the effect of earth curvature is not considered at a radar 

distance of 150 km. 

The variations of the RMS error in horizontal wind components (Vh), vertical velocity 

(w), perturbation potential temperature ( ) and perturbation water vapor mixing ratio (qv) 

are plotted in Fig. 3.12. It is demonstrated that the RMS errors in NoBBM_150 are 

generally larger than that in CNTLM_150 but do not deviate much. The NoCVM_150 

experiment yields the worst results with the largest RMS errors during the 1h long 

assimilation period among all three experiments, especially for variables Vh and qv. These 

error statistics also indicate that when a storm is 150 km from the radar, neglecting beam 

broadening worsens the results slightly while overlooking earth curvature produces 

significantly worse results for retrieved model variables.  
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Fig. 3.10. Same as Fig. 3.7, but (a), (b), (c) are for truth simulation; (d), (e), (f) are for 
CNTLM_150; (g), (h), (i) are for NoBBM_150; (j), (k), (m) are for NoCVM_150.  Solid 
contour for positive, and dashed contour for negative. 
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Fig. 3.11. Same as Fig. 3.8, but (a), (b), (c) are for truth simulation; (d), (e), (f) are for 
CNTLM_150; (g), (h), (i) are for NoBBM_150; (j), (k), (m) are for NoCVM_150.  Solid 
contour for positive, and dashed contour for negative. 
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Fig. 3.12. The evolution of the RMS error for different model variables.  The solid lines 
are for CNTLM_150, the dashed lines are for NoBBM_150, and the dotted lines are for 
NoCVM_150. 
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3.6 Summary and discussion 

To utilize high-resolution radar radial velocity data in storm-scale data assimilation, it 

is necessary to compute the model counterpart of radial winds by converting u, v, w 

winds on model grids into radial velocity in radar coordinates. This is called the radar 

forward observation operator. The most accurate forward observation operator includes 

considering the effect of beam broadening and the earth curvature. However, this may 

lead to higher computational cost that could impact the lead time of a forecast system or 

require additional computational resources. So some past research used a very simple 

form of radar observation operator by neglecting the two effects mentioned above, or 

where better formulations were used, but the impact of that choice was not explicitly 

measured.  In this study, we studied the effects of these assumptions on assimilating data 

from an idealized simulated supercell storm. It is shown that both the effects of beam 

broadening and earth curvature can only be neglected when the radar is near the storm, 

within 60 km, as demonstrated by this study.  

For wind analysis at a single time, as the surface range increases, more and more 

additional error will be introduced into the analysis by the neglect of the two effects. The 

effect of beam broadening becomes evident and can cause relatively large errors for 

ranges at and beyond 150 km. The effect of earth curvature is very significant when the 

surface range is beyond 60 km due to vertical location errors in the data. The impact of 

refractive index gradient is also tested. It is shown that the variation of refractive index 

gradient has a very small impact on the wind analysis.  It is acknowledged there are 

extreme cases where ducting and other effects can occur causing false echoes and ground 
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or sea clutter, but it is assumed such data will be properly screened from use in data 

assimilation. 

In two series of one-hour-long data assimilation experiments it is shown that the 

impact of both effects is not significant for retrieving all model variables when the radars 

are relatively close to the storm (generally within 60 km). When the radars are far from 

the storm, not accounting for beam broadening has a rather small effect on the accuracy 

of assimilation results after one-hour assimilation. So the effect of beam broadening can 

be generally overlooked in radar data assimilation. On the other hand, ignoring the 

earth’s curvature leads to significant errors (especially beyond 150 km) for retrieved 

model variables and reflectivity due to vertical location error in the data.  

The results of this study may provide useful guidance for application of radar radial 

velocity data to storm scale diagnostic studies as well as numerical weather prediction.
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Chapter 4 Storm-scale 3DVAR with diagnostic pressure equation as a 

weak constraint and its applications to the prediction of tornadic 

supercell thunderstorms 

4.1 Introduction 

There exist many challenges in forecasting convective storms due to their high 

localization. One of them is how to produce a dynamic consistent initial condition for 

storm-scale Numerical Weather Prediction (NWP) model. Currently, the Weather 

Surveillance Radar-1998 Doppler (WSR-88D) radar network is the only source to 

routinely provide observations that can resolve storm-scale features in a high temporal 

and spatial resolution. Therefore, in recent years, many studies are focused on the 

assimilation of the WSR-88D radar level II data into a NWP model to provide better 

initial condition so as to improve the forecast of the storms.  

Many assimilation methods have been developed for this purpose, such as 4DVAR, 

3DVAR, EnKF etc. The 4DVAR method is considered theoretically the best one. It uses 

the NWP model as a strong constraint and fits the model to observations at different time 

levels during a time window. By doing so, the best representation of the observations in 

the initial condition can be achieved and the initial condition is naturally dynamic 

consistent. Sun and Crook (1997, 1998), and Sun (2005a) had shown some encouraging 

results by using the 4DVAR method. However, in spite of their inspiring results, the 

4DVAR method is currently in limit usage for storm-scale NWP because the tedious 

work to derive and maintain adjoint model and the expensive computational cost. The 

EnKF Method is an emerging technique, which promises to produce the similar 
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assimilation quality with 4DVAR but avoids the derivation of the adjoint model. Lots of 

experiments have been conducted using EnKF (e.g.Snyder and Zhang 2003; Zhang et al. 

2004; Caya et al. 2005; Tong and Xue 2005; Meng and Zhang 2008a, 2008b; Aksoy et al. 

2009; Zhang et al. 2009; Aksoy et al. 2010; Torn 2010; Dowell et al. 2011). These 

experiments have shown a very good potential of the EnKF method. On the other hand, 

EnKF is not as mature as 4DVAR, 3DVAR and its computational cost is still very 

intensive. Its realtime application to storm-scale NWP remains a big challenge. 

The 3DVAR method is much more efficient, compared to the 4DVAR and EnKF 

methods, and easy to be applied to operational storm-scale data assimilation. Some 

studies (e.g. Bishop et al. 2001; Hu et al. 2006a; Hu et al. 2006b; Zhao et al. 2006; Hu 

and Xue 2007; Stensrud and Gao 2010) have successfully demonstrated the ability of the 

3DVAR to assimilate radar data to predict tornadic supercell storms. The ARPS 3DVAR 

system and its cloud analysis package had been used to produce continental-US-scale 

realtime weather predictions at a high 1km resolution (CAPS news, 5/2009, 

http://www.caps.ou.edu). However, despite its successful application, the 3DVAR 

scheme is often challenged by its sub-optimum theoretically due to its use of static 

isotropic background covariance structure and the lack of suitable balances among model 

variables. Efforts have been made to alleviate the negative impact of this drawback. Liu 

and Xue (2006; 2007) reported the effort to build a flow-dependent background error 

covariance for a 3DVAR system using an anisotropic recursive filter and demonstrated 

the improvement from this method in the retrieval of moisture from GPS slant-path water 

vapor observations. Hamill and Snyder (2000) and Wang et al. (2008b, 2008a) illustrated 

a direction to provide more reasonable flow-dependent time-evolving background 
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covariance for a 3DVAR system from an EnKF method. This immerging technique is 

called the hybrid data assimilation and is still at its early stage of development. 

Another alternative to overcome the imbalance among model variables in a 3DVAR 

analysis is to develop suitable weak constraints to help spread the information from 

ingested observations to other model variables that is not directly linked with 

observations. Gao et al. (1999; 2001; 2004), Hu et al. (2006a; 2006b) and Hu and Xue 

(2007) incorporated the mass continuity equation into the cost function and found that 

this weak constraint can effectively help build more reasonable balance among the three 

components of wind fields. This is a good progress. However, there is still no suitable 

balance among the dynamic and thermodynamic fields in an analysis. Xiao et al. (2005) 

reported their efforts to build suitable balance between the wind fields and the 

thermodynamic fields in the MM5 3DVAR system using a constraint based on the 

Richardson equation, which combines the continuity equation, adiabatic thermodynamic 

equation and hydrostatic equation. This is a good attempt, however, the hydrostatic and 

adiabatic assumption are not applicable to storm-scale data assimilation. Some other 

3DVAR radar data analysis and data assimilation studies (Protat and Zawadzki 2000; 

Liou 2001; Protat et al. 2001; Weygandt et al. 2002a, 2002b; Liou et al. 2003; Zhao et al. 

2006, 2008; Liou and Chang 2009) turned to adopt a two-step thermodynamic retrieval 

technique to derive the temperature and pressure fields from already recovered wind 

fields. It is expected that this method can improve the balance among model fields and 

hence lead to a better forecast. This technique were pioneered by Gal-chen (1978) and 

Hane and Scott (1978). Since then, lots of researches (e.g. Gal-chen and Hane 1981; 

Hane et al. 1981; Brandes 1984; Gal-Chen and Kropfli 1984; Hane and Ray 1985; Roux 
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1985; Lin et al. 1986; Roux 1988; Roux and Sun 1990; Sun and Houze 1992; Lin et al. 

1993; Roux et al. 1993; Shapiro and Lazarus 1993; Crook 1994; Crook and Tuttle 1994; 

Sun and Crook 1996; Protat and Zawadzki 2000; Liou 2001; Protat et al. 2001; Yu et al. 

2001; Liou et al. 2003; Liu et al. 2005; Liou and Chang 2009) contributed to test, 

understand and improve this technique. However, the application of this method into 

storm-scale data assimilation and numerical weather prediction remains a big problem. 

The difficulty lies mainly in how to estimate wind tendency terms in model momentum 

equations. The different time differential schemes and different elapsed times between 

two wind observations significantly affect the accuracy of the wind tendency 

calculation(Crook 1994).  

In this study, the calculation of the wind tendency term will be avoided by applying 

the divergence operator to the three model momentum equations. The derived equation is 

called the diagnostic pressure equation. This diagnostic pressure equation will be 

incorporated into the 3DVAR cost function in the form of a weak constraint in addition to 

the aforementioned mass continuity equation constraint. The main goal of this diagnostic 

divergence constraint is to help improve dynamic consistency between the dynamic 

model fields and thermodynamic model fields. Xu et al. (2001a) tried to include a similar 

diagnostic pressure equation constraint in their simple adjoint system for three-

dimensional wind retrieval from single-Doppler radar by treating the radial velocity as a 

tracer. They found that the diagnostic pressure equation constraint can help improve the 

retrieval of wind fields in single time data analysis. The results are encouraging. However, 

the impact of the diagnostic pressure equation constraint on intermittent data assimilation 

and the following forecast has not been investigated. 
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In this Chapter, we will discuss the development of the diagnostic pressure equation 

constraint under ARPS 3DVAR framework and its applications to tornadic supercell 

thunderstorms. The following part is organized as follows. Section 4.2 will discuss the 

schemes adopted by the 3DVAR system and focus on the development of the diagnostic 

pressure equation constraint. Section 4.4 examines the impact of the diagnostic pressure 

equation constraint on storm-scale data assimilation using an idealized supercell 

thunderstorm. Section 4.4 and Section 4.5 presents the results from the application of the 

updated 3DVAR scheme to the 8 May 2003 Oklahoma City tornadic supercell 

thunderstorm case and the 5 May 2007 Greensburg tornadic supercell thunderstorm case. 

Summary and future work will be discussed in Section 4.6.  

4.2 The scheme for the 3DVAR system 

A 3DVAR system within the ARPS framework (Xue et al. 2000; Xue et al. 2001; 

Xue et al. 2003) has been developed and applied to the assimilation of WSR-88D radar 

data and other data (Gao et al. 1999; Gao et al. 2004; Hu et al. 2006a; Hu et al. 2006b; Hu 

and Xue 2007; Stensrud and Gao 2010). The system consists of two components, one is 

the 3DVAR subsystem, which is to assimilate radar radial velocity data as well as other 

conventional observations in a three dimensional variational framework; the other one is 

the cloud analysis subsystem which is to assimilate the radar reflectivity data, satellite 

data, etc, based mainly on semi-empirical rules. The cloud analysis system not only 

updates the hydrometeor fields, but also adjusts in-cloud temperature field and water 

vapor field according to users’ parameter setting. 
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4.2.1 The 3DVAR subsystem 

In the 3DVAR subsystem, the cost function, J, is written as the sum of the 

background term and the observational term plus a penalty or equation constraint term 

(Jc):  

   1 11 1
( ) ( ) (( )

2 2

Tb T b o o
b o c cJ x J J J x x B x x H x x R H x y J                      (4.1) 

Following the standard notion of Ide et al (1997), x and xb are the analysis and 

background state vectors, and yo is the observation vector. B and R are the background 

and observation error covariance matrices respectively. H(x) is the observation operator. 

To improve the conditioning of the cost function minimization and avoid the need for the 

inverse of B, a new control variable v is introduced, which is related to the analysis 

increment according to 

1/ 2b x x B v                                                     (4.2) 

In terms of v, the background term becomes,  

(1/ 2) T
bJ  v v                                                     (4.3) 

Consequently, the minimization is performed in the space of v. The recursive filter 

proposed by Purser et al. (2003a, 2003b) is used to model the effect of the background 

error covariance, or more precisely the square root of B. Currently in our 3DVAR 

subsystem, the background is provided by a previous ARPS model forecast, or other 

large scale models’ forecast. The observations include Doppler radar radial velocity, 

single-level surface data (such as Mesonet), and multiple-level observations (such as 

rawinsondes and wind profilers). 
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Term Jc  in (1) includes any penalty or equation constraint terms that serve the 

important role of correlating the desired analysis variables. Currently it includes two 

terms as defined in the following,  

1 1( ) ( ) ( ) ( )T T
c P QJ P x A P x Q x A Q x                                                  (4.4) 

The first term on the right hand side (R.H.S) of equation (4.4) is the diagnostic 

pressure equation constraint in which, 
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Where,  
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V iu jv kw  
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                                                                             (4.7) 

     C i fv f w j fu k f u      
   

                                              (4.8) 

u v wD iD jD kD  
   

                                                                           (4.9) 

vector E  is the forcing term of the vector Euclidian momentum equation. The primed 

variables are perturbations from a base state, cs is the acoustic wave speed, and is the 

ratio of the gas constants for dry air and water vapor. The Coriolis coefficients 

2 sin( )f    and  2 cos( )f   , where is the angular velocity of the earth and is 

latitude. The terms, Du,  Dv and Dw contain the subgrid scale turbulence and computational 

mixing terms. Other symbols follow conventions. 
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Equation (4.5) is derived by applying the diverging operator to the three ARPS 

model momentum equations: 

 '
u

u p
V u fv f w D

t x
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Equations (4.10)-(4.12) are the basis of the thermodynamic retrieval technique 

mentioned in previous section (Section 4.1). To get a reasonable storm-scale 

thermodynamic retrieval, it is required to get a very good estimation of the three wind 

tendency terms on the left hand side of equations (4.10)-(4.12), i.e. 
u

t
 


, 
v

t
 


, 
w

t
 


. 

However, this task is often very difficult since the storm scale features change rapidly in 

time and the radar observations are usually taken in a relative slow pace ( every five to 

six minutes in practice). The inaccuracy and incompleteness of the wind observations 

worsens the scenario. To overcome this problem and help establish some kind of balance 

among model variables, we incorporate the diagnostic pressure equation (4.5), which is 

derived from the three momentum equations (4.10)-(4.12), into the ARPS 3DVAR 

system in the form of a weak constraint (named as P  in equation (4.4) ). In this way, the 

calculation of wind tendency terms can be avoided. 

The second term on R.H.S of equation (4.4) is intended to minimize the 3D 

anelastic mass divergence so as to provide the key coupling among the three wind 
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components. The definition and the impact of this constraint had been thoroughly 

investigated by Gao et al. (1999; 2004) and Hu et al. (2006b). 

The two A’s in Eq. (4.4) are the error covariance associated with the corresponding 

constraints, which are assumed to be diagonal matrices with empirically defined constant 

diagonal elements. They determine the relative importance of each constraint and their 

optimal values can be determined through many numerical experiments in a trial-and-

error fashion suggested by Sun and Crook (2001) and usually should not far from the 

order of each term.  

4.2.2 The cloud analysis subsystem 

The cloud analysis subsystem is based on semi-empirical physical laws and used to 

derive the hydrometeor information from radar reflectivity data, satellite infrared and 

visible imagery data, METARs and cloud reports from surface observations from Global 

Observing System (GOS) of the World Meteorological Organization. The in-cloud 

temperature field and/or water vapor field can also be adjusted according to user’s choice. 

More details about the ARPS cloud analysis package can be found in Zhang et al (1998), 

Brewster (2002), Hu et al (2006a). 

4.2.3 Connection between the two subsystems 

Under the context of ingesting radar data alone (radial wind and reflectivity), the 

analysis variables in the 3DVAR subsystem are the three wind components u, v, w; and 

the analysis variables in the cloud analysis subsystem can be potential temperature ’, 

water vapor mixing ratio qv, rain water mixing ratio qr, snow water mixing ratio qs, hail 

mixing ratio qh, cloud water mixing ratio qc and ice mixing ratio qi. Currently, the cloud 
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analysis subsystem is a follow-on step after the finish of running the 3DVAR subsystem. 

These two subsystems are separated from each other and there is no suitable coupling 

between the wind fields and the thermodynamic fields. Therefore, there may be 

inconsistency between the different model variables in a single analysis step. This 

inconsistency may harm the quality of subsequent data assimilation cycles and the 

ensuing forecast. 

To alleviate this kind of inconsistency, we propose that the cloud analysis 

subsystem is done first when it is used in the assimilation runs. The results from the cloud 

analysis package will then be treated as pseudo observations and be ingested, as well as 

radar radial velocity data, by the 3DVAR subsystem. The diagnostic pressure equation 

constraint incorporated into the cost function will then act to help improve the balance 

between the dynamic and thermodynamic fields. In this way, it is expected that a more 

dynamically consistent analysis will be achieved and therefore, the following data 

assimilation cycles and the subsequent forecast will be improved. 

4.2.4 The verification of adjoint codes and the behavior of cost function 

The diagnostic pressure equation constraint involves the use of the three full ARPS 

momentum equations (excluding the wind tendency terms, hereafter). When computing 

the gradient part of the diagnostic pressure equation constraint, adjoint codes for the three 

full ARPS momentum equations is required. Developing adjoint codes is not a trivial 

work. However, it is lucky that the adjoint code here is only for the three full ARPS 

momentum equations. There is no need to considering complex microphysics processes 

in the model that contain strong nonlinearity.  Therefore, the maintenance of the adjoint 

code here is relative easier than that of 4DVAR data assimilation. In practice, the adjoint 
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coding work is done according to the general rules proposed by Giering and Kaminski 

(1998). 

It is very important to make sure the gradient of the cost function is computed 

correctly otherwise the minimization is erroneous. Similar to Wang (1993), let Z be the 

control vector, J(Z) be the cost function. To expand  zJ Z J   at the direction z J  

using the Taylor series, it can be derived that: 
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                               (4.13) 

For a very small   if the gradient is computed correctly, the ( )  should take the 

value of one. The updated ARPS 3DVAR with the diagnostic pressure equation 

constraint has been verified using the above method. Fig. 4.1 shows that when  takes a 

small value from 10-5 to 10-15, ( )  takes the value of one. This justifies that the gradient 

calculation is correct. 
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Fig. 4.1. The verification of the gradient calculation (a) variation of ( )  with log( )  

and (b) variation of log ( ) 1    with log( ) . 
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Fig. 4.2 The scaled cost function (Jk/Jmax) as a function of the number of iterations. The 
red line is for the total cost function, the blue line is the part contributed by the radar 
observation term, the olive green line is the part contributed by the diagnostic pressure 
equation constraint and the purple line is the part contributed by the mass continuity 
equation constraint. 

 

To check whether the minimization process goes well after including the diagnostic 

pressure equation constraint in the 3DVAR system, the behavior of the cost function is 

examined by plotting the evolution of the scaled cost function with the number of 

iterations in a similar way as Gao et al. (2001). The individual parts in the total cost 

function contributed respectively by the radar observation term, the mass continuity 

equation constraint and the  constraint are also plotted for investigation. As an example, 

Fig. 4.2 shows the evolution of scaled cost function for analyses valid at the beginning of 

the data assimilation run for the 8 May 2003 Oklahoma City tornadic supercell storm in 

Section 4.4.  The weighting coefficient, or the diagonal elements api of matrix Ap for the 

diagnostic pressure equation constraint used for this test is 7.0E-8. It can be seen from 
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Fig. 4.2 that the total cost function and the three parts (from radar observation, DP 

constraint, MC constraint respectively) all decrease well in the minimization process. 

Other different weighting coefficients (api*10, api/10) for the diagnostic pressure equation 

constraint are also tested and the cost function decreases similarly. These tests confirm 

that the updated ARPS 3DVAR system with one more weak constraint (the diagnostic 

pressure equation constraint) works correctly and is ready for the following idealized 

testing and real case studies. 

4.2.5 The measurement of dynamic consistency in single analysis step 

It is expected that the dynamic consistency among model variables in single analysis 

step can be improved by the use of diagnostic pressure equation constraint. However, it is 

a challenge to directly measure the consistency among model variables of an analysis.  

In previous thermodynamic retrieval researches, a so-called “momentum checking” 

method (Gal-chen and Hane 1981) is mainly used to check the quality of retrieved 

thermodynamic fields. The 3D momentum checking (Er) quantity is defined based on 

equations (4.10)-(4.12) as follows (similar to Liou et al. 2003): 
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The symbols in equations (4.14)-(4.17) follow the same meanings as in equations (4.5) - 

(4.12). 

Although the momentum checking method is useful for the evaluation of the quality 

of the thermodynamic retrievals, it cannot be used directly for our study. As can be seen 

in equations (4.15)-(4.17), in order to compute the Er quantity, the wind tendency terms 

in the three momentum equations should be known in advance. In some previous 

thermodynamic retrieval studies, the tendency terms is calculated by the difference 

between two or among three successive radar volume scans, which are collected every 5 

or 6 minutes. In some mesoscale studies, the tendency terms are just approximated by 

zero values. Both of these approximations are not acceptable for storm-scale data 

assimilation.  

An alternate approach is adopted in this research. The tendency terms is estimated 

from the previous ARPS model run. For example, for an analysis at time t (except the 

beginning of the data assimilation), the background is the five-minute ARPS model 

forecast starting at time t-5min. The model run also computes the wind tendency terms in 

the forecast every integral time step. The wind tendency terms at time t are then dumped 

out to be treated as a rough estimate of the true tendency terms. This is not ideal, but may 

provide a general view how the dynamic consistency will be improved by including the 

diagnostic pressure equation constraint in the 3DVAR cost function. Generally, a smaller 

Er value means more dynamic consistent analysis, however there still exist exceptions as 

discussed in Hane and Ray (1985). Therefore, it is the best to consider the momentum 

checking method as a partial or relative measurement.   
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We now use again the 8 May 2003 Oklahoma City tornadic supercell storm in 

Section 4.4 as an example to demonstrate the decrease of Er value when the diagnostic 

pressure equation constraint is used in the analysis step. A first analysis if performed at 

t=2140UTC. Starting from this analysis, a five-minutes (2140UTC~2145UTC) forecast is 

produced and the wind tendency terms at t=2145UTC are dumped from the model. At 

t=2145UTC, four analysis experiments using different weighting coefficients for the 

diagnostic pressure equation constraint are conducted and the Er values for each 

experiments are computed. It should be noted that all these analysis experiments include 

the mass continuity equation constraint. Table 4.1 shows the calculation results. It can be 

seen that the Er Value for the analysis without the use of the diagnostic pressure equation 

constraint is the largest. As the weighting coefficient decreases (means more part of  the 

cost function is contributed by the diagnostic pressure equation constraint), the Er Value 

get smaller. The Er checking is also conducted for other case studies in this paper and at 

other analysis times, the behavior is very similar. That is, the use of the diagnostic 

pressure equation constraint yields smaller Er Values. Therefore, it can be concluded that 

the diagnostic pressure equation constraint does help improve the dynamic consistency 

among model variables in single analysis step in terms of the momentum checking 

quantity.   

 

Table 4.1 List of Er Value with different weighting coefficients for the diagnostic 
pressure equation constraint  
 
DP weighting coefficient n/a 7E-7 7E-8 7E-9 

Er Value 0.0011958 0.0010777 0.0007783 0.0006086 
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4.3 The impact of the  constraint in idealized experiments 

4.3.1 Experimental design 

4.3.1.1 The prediction model and truth simulation 

To examine the impact of the constraint on the storm-scale 3DVAR, a series of OSS 

experiments are conducted using simulated data from the May 20, 1977 Del City, 

Oklahoma supercell storm case (Ray et al. 1981). The Advanced Regional Prediction 

System (ARPS) is used to simulate such a deep convective storm within a 54 x 54 x 16 

km3 physical domain. The model grid comprises of 57 x 57 x 35 grid points. Horizontal 

resolution of 1km and vertical resolution of 0.5km are used. The truth simulation is 

initialized from a modified real sounding plus a +4K ellipsoidal thermal bubble centered 

at x=48, y=16 and z=1.5km, with radii of 10km in x and y directions while 1.5km in z 

direction. The Lin three categories ice microphysical scheme is used together with a 1.5-

order turbulent kinetic energy subgrid parameterization. Open conditions are used at the 

lateral boundaries. A wave radiation condition is also applied at the top boundary. Free-

slip conditions are applied to the bottom boundary. The length of simulation is up to two 

hours. A constant wind of u=3ms-1and v= 14ms-1 is subtracted from the observed 

sounding to keep the primary storm cell near the center of model grid. The evolution of 

the simulated storms is similar to those documented in Xue et al. (2001). 

During the control run, the supercell strengthens over the first 20 minutes. The 

strength of the cell then decreases thereafter. At around 55 minutes, the cell splits into 

two. The north-northeastward moving cell tends to dominate the system. Another cell 

moves northwestward and splits again at 95 minutes. 
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4.3.1.2 Simulation of radar observations 

The experiments assimilates pseudo radial velocity observations from two radars, 

which are located at the southwest corner (i.e. x=0km, y=0km) and the southeast corner 

(i.e. x=54km, y=0km) of the model domain. The pseudo radar radial velocity (Vr) 

observations are assumed available on the grid points and calculated as follows. 

 sin cos cos cos sinrV u v w                                    (4.18) 

where is the elevation angle,   is the azimuth angle, and u, v and w are the three 

components of wind fields taken from the truth simulation. Random Gaussian noise with 

a standard deviation of 1m s-1 is added to the pseudo radial velocity. Terminal velocity is 

not considered.  

4.3.1.3 Experimental design 

The first 3DVAR analysis is started at t=30 minutes into truth simulation. From this 

analysis, the ARPS model runs for a 5-minute forecast. Then new radar data at the end of 

the 5-minute forecast is ingested into the model through the 3DVAR analysis again. This 

intermittent assimilation repeats until t=90 minutes into the truth simulation. Therefore, 

the data assimilation covers a sixty-minute period. 

Table 4.1 lists all the data assimilation experiments. First four experiments (CNTL, 

onlyMC, onlyDP, NOEC) are designed mainly to investigate the impact of the diagnostic 

pressure equation constraint on the storm-scale data assimilation. For comparison 

purpose, the impact of the mass continuity equation constraint is also examined here. The 

“CNTL” experiment uses both the diagnostic pressure equation constraint and the mass 

continuity equation constraint. The “onlyMC” experiment uses only the mass continuity 

equation constraint and “MC” is an abbreviation representation of “Mass Continuity 
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equation” (hereafter). The “onlyDP” uses only the diagnostic pressure equation constraint 

and “DP” is an abbreviation of “Diagnostic Pressure equation” (hereafter). The “NOEC” 

means “NO Equation Constraint” is used. 

 

Table 4.2. List of data assimilation experiments (“DP” stands for “Diagnostic Pressure 
equation”, “MC” stands for “Mass Continuity equation”) 

 DP weighting coefficient if used  MC weighting coefficient  if used 

CNTL 2.5E-7 2.5E-7 

onlyDP 2.5E-7  

onlyMC  2.5E-7 

NOEC   

CNTL_DP*5 1.25E-6 2.5E-7 

CNTL_DP/5 5.0E-8 2.5E-7 

CNTL_DP*25 6.25E-6 2.5E-7 

CNTL_DP/25 1.0E-8 2.5E-7 

CNTL_MC*5 2.5E-7 1.25E-6 

CNTL_MC/5 2.5E-7 5.0E-8 

CNTL_MC*25 2.5E-7 6.25E-6 

CNTL_MC/25 2.5E-7 1.0E-8 

 

The next four experiments (CNTL_DP*5, CNTL_DP/5, CNTL_DP*25, 

CNTL_DP/25) are designed to test the sensitivity of the data assimilation to the DP 

weighting coefficient. The “CNTL_DP*5” experiment is the same as the “CNTL” 

experiment except that the DP weighting coefficient is increased by five times, which is 
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indicated by the symbols “DP*5”. Similarly, the “CNTL_DP*5” experiment is the same 

as the “CNTL” experiment except that the DP weighting coefficient is decreased by five 

times. Similar explanations go to the experiment “CNTL_DP*25”, “CNTL_DP/25” 

which change the weighting coefficient by twenty-five times. 

Finally, the last four experiments (CNTL_MC*5, CNTL_MC/5, CNTL_MC*25, 

CNTL_MC/25) are designed to test the sensitivity of the data assimilation to the MC 

weighting coefficient. Similar symbols are used as the previous four experiments. 

To compare the accuracy of the data assimilation results from different 

experiments, the RMS error statistics of model variables between the experiments and the 

truth simulation are computed using the following equation: 

2
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_
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i

s s
RMS s

N






                                              
 (4.19) 

where N is the total number of three dimensional grid points used in the calculation, and 

the subscript simu stands for the data from the truth simulation. The computation of the 

RMS error statistics is only done over model grid points where the reflectivity (estimated 

from the local hydrometeor mixing ratios) of the truth simulation is greater than 10 dBZ. 

4.3.2 Results of experiments 

4.3.2.1 The impact of the diagnostic pressure equation constraint  

To investigate the impact of the diagnostic pressure equation constraint, the RMS 

error statistics are calculated during the whole assimilation period for all model variables 

and are shown in Fig. 4.3. For easy display and without harm to the conclusions, the 

RMS errors of the rain/snow/hail mixing ratios are substituted by the RMS error of 
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simulated reflectivity, and the RMS error for V component of wind field is not shown as 

it evolves similar to the RMS error for U component of wind fields.  

First, look at the results from the “NOEC” experiments (the red solid line), which 

excludes both constraints, with that from the “onlyDP” experiments (the blue dashed 

line), which imposes the diagnostic pressure equation constraint alone. After fifteen 

minutes of data assimilation (i.e. after three data assimilation cycles, at t=45 minutes of 

truth simulation), the improvement on the rainfall/cloud-water RMS error can already be 

distinguished although the improvement is still slight. After thirty minutes of data 

assimilation (i.e. after six data assimilation cycles, at t=60 minutes of truth simulation), 

the data assimilation results from the “onlyDP” experiment are further improved and 

much better than that of the “NOEC” experiment (Fig. 4.3). After that, the RMS errors 

from the “onlyDP” experiment are generally smaller than that from the “NOEC” 

experiment.  

Similar behaviors can also been seen by comparing the “CNTL” experiments (the 

magenta solid line) and the “onlyMC” experiments (the green dashed line) which is the 

same as the “CNTL” experiment but without the diagnostic pressure equation constraint. 

After fifteen minutes data assimilation (i.e. t=45 minutes into truth simulation), the 

“CNTL” experiment produces smaller RMS error in the reflectivity field. After thirty-five 

minutes data assimilation (i.e. t=65 minutes into truth simulation), the “CNTL” 

experiment produces smaller RMS errors in all model fields than the “onlyMC” 

experiment.  
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Fig. 4.3. The evolution of RMS error of model fields during the 1-h assimilation period 
for (a) U component of wind fields, (b) vertical velocity, (c) perturbation potential 
temperature, (d) pressure, (e) water vapor mixing ratio, (f) cloud water mixing ratio, (g) 
cloud ice mixing ratio, (h) simulated reflectivity from model rain/snow/hail mixing ratio. 
The solid magenta line is for the “CNTL” experiment, the blue dashed line is for the 
“onlyDP” experiment, the green dashed line is for the “onlyMC” experiment and the 
solid red line is for the “NOEC” experiment. 
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From the above discussions, it can be concluded that the diagnostic pressure 

equation constraint does improve the data assimilation results after several data 

assimilation cycles. It is so no matter whether the mass continuity equation is included or 

not.  

In practice, the mass continuity equation is often included in the storm-scale 

3DVAR data assimilation since it can help retrieve better vertical velocity and horizontal 

winds in single analysis step. This can be clearly seen from Fig. 4.3a and Fig. 4.3b 

(comparing the red solid line and the green dashed line), where the mass continuity 

equation constraint helps reduce the RMS error of U component of wind fields analysis 

by about 0.5 m s-1 and vertical velocity analysis by about 2 m s-1 for first data analysis 

cycle. The better-analyzed wind fields then promote an improved recovery of other 

model fields. 

The impact of the diagnostic pressure equation constraint on single time analysis is 

not easy to be demonstrated as that of the mass continuity equation constraint discussed 

in the above. In the first analysis, the RMS errors from the “onlyDP” experiment are 

almost the same as that from the “NOEC” experiment.  Further investigation on the RMS 

errors in different vertical model levels does show some differences. The RMS errors of 

U component of wind fields between roughly z=7km MSL and z=12km MSL are very 

slightly smaller in the “onlyDP” experiment than that in the “NOEC” experiment 

(decreased about 0.001 m s-1). The RMS errors of vertical velocity in the low levels 

(below 2.5km MSL) and mid-upper levels (7km MSL ~ 9km MSL) are also very slightly 

smaller in the “onlyDP” experiment than that in the “NOEC” experiment (decreased 

about 0.004 m s-1).  The RMS errors of perturbation pressure in vertical levels of 2km ~ 
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8km MSL are again very slightly smaller in the “onlyDP” experiment than that in the 

“NOEC” experiment (decreased about 0.1 Pa). The RMS errors of perturbation potential 

temperature in the vertical levels of 3.5km MSL~9km MSL are very slight larger in the 

“onlyDP” experiment than that in the “NOEC” experiment (increased about 0.004K).  

The RMS errors of water vapor field in the “onlyDP” experiment are essentially the same 

as that in the “NOEC” experiment, which is expectable since the buoyancy contribution 

from the perturbation water vapor is normally at least one order of magnitude less than 

that from other buoyancy terms in the vertical momentum equation. Although the above 

impact at single time analysis is very slight, it actually gives out a picture that how the 

model variables are adjusted by the diagnostic pressure equation constraint. It can be 

assumed that the diagnostic pressure equation constraint helps improve the analysis of 

wind fields and pressure fields. At the same time, the temperature field is slightly 

adjusted to be dynamically consistent with the updated wind fields and pressure fields. 

The adjustment in the temperature field does not necessary mean to reduce the RMS error 

of it at single time analysis. Instead, the RMS error of potential temperature field may 

actually increases very slightly. However, this adjustment is necessary and good to boost 

dynamic consistency among model variables and therefore to produce improved data 

assimilation results in the following cycles, which has been demonstrated in the above 

discussions about Fig. 4.3. 

Overall, it is shown in Fig. 4.3 that the diagnostic pressure equation constraint and 

the mass continuity equation constraint both can improve the data assimilation results. 

The impact of the mass continuity equation constraint is more direct at the first several 

data assimilation cycles as it greatly promotes a better analysis of vertical velocity. The 
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impact of the diagnostic pressure equation constraint is not obvious in single time 

analysis although it does slightly improve the analysis of the wind fields (also 

demonstrated by Xu et al. 2001a) and the pressure field. For the entire intermittent data 

assimilation cycles, the impact of the diagnostic pressure equation constraint is evidently 

positive. Including both the constraints at the same time yields the best data assimilation 

results with least RMS error statistics in all model variables. 

All the above discussions are based on the RMS error statistics. How these RMS 

error differences are related to changes in individual model fields? As examples, here we 

will show the recovery results after forty-five minutes data assimilation (i.e. at t=75 

minutes into truth run) for the reflectivity field, the potential temperature field and the 

vertical velocity field. Fig. 4.4 shows the distribution of the RMS error at different 

vertical levels from z=0km MSL to z=12km MSL. The solid magenta line is for the 

“CNTL” experiment, the blue dashed line is for the “onlyDP” experiment, the green 

dashed line is for the “onlyMC” experiment and the solid red line is for the “NOEC” 

experiment. From Fig. 4.4a, it can be seen that the RMS error of the reflectivity field is 

evidently reduced in the “onlyDP” and “CNTL” experiments as compared to that in the 

“NOEC” and “onlyMC” experiment respectively. The most noticeable decreases (by 

about 4dBZ) are at the vertical levels from about z=6km MSL to z=8km MSL. Fig. 4.5 

shows the simulated reflectivity fields at z=6.5km MSL. For easy comparing, the 

difference of the reflectivity field between each data assimilation experiment and the 

truth simulation are also plotted in Fig. 4.5. It can be seen that at this time (after forty-five 

minutes of data assimilation), the rainfall pattern for the domain-centered storm cell is 

recovered well in all the four data assimilation experiments. The most noticeable 
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difference lies in the recovery of the rainfall pattern of the upper-left-cornered storm cell 

and the region between these two storm cells. It is very clear that the “onlyDP” and the 

“CNTL” experiments produce better results in the above area over the “NOEC” and the 

“onlyMC” experiments. The “CNTL” experiment yields the best data assimilation results 

in terms of the recovery of the rainfall pattern in the whole domain. 
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Fig. 4.4. The RMS error at vertical levels from z=0km MSL to z=12km MSL at 
t=75minutes into truth simulation (after forty-five minutes of data assimilation) for (a) 
reflectivity field, (b) perturbation potential temperature, and (c) vertical velocity. The 
solid magenta line is for the “CNTL” experiment, the blue dashed line is for the 
“onlyDP” experiment, the green dashed line is for the “onlyMC” experiment and the 
solid red line is for the “NOEC” experiment.  
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Fig. 4.5. The simulated reflectivity field at z=6.5km MSL for (a) the truth simulation, (b) 
the “CNTL” experiment, (d) the “NOEC” experiment, (e) the “onlyDP” experiment, (f) 
the “onlyMC” experiment; and the difference of the reflectivity field between each data 
assimilation experiment and the truth simulation at z=6.5km MSL for (c) the “CNTL” 
experiment, (g) the “NOEC” experiment, (h) the “onlyDP” experiment, (i) the “onlyMC” 
experiment . All the above plots are available at t=75 minutes into truth simulation (i.e. 
after forty-five minutes data assimilation). 
 
 
 

From Fig. 4.4b, it can be seen that the decrease of the RMS error of the perturbation 

potential temperature field by the use of equation constraints is mainly for the vertical 

levels from z=2km MSL to z=8km MSL. The most noticeable reductions (by about 

0.3~0.4K) are at the vertical levels from about z=5km MSL to z=7.5km MSL. Fig. 4.6 

shows the perturbation potential temperature fields at z=6.5km MSL. For easy comparing, 
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the differences of the perturbation potential temperature field between each data 

assimilation experiment and the truth simulation are also plotted in Fig. 4.6. It can be 

seen that at this time (after forty-five minutes of data assimilation), the potential 

temperature field is recovered very well in all the four data assimilation experiments and 

there is no significant pattern difference among the results from the four experiments at 

first glance. However, from the difference fields (Fig. 4.6c, g, h, i), it can be more clearly 

seen that the mass continuity equation constraint mainly helps improve the recovery of 

the temperature structure for the domain-centered storm cell (Fig. 4.6i vs. Fig. 4.6g) and 

the diagnostic pressure equation constraint mainly helps improve the recovery of the 

temperature structure for the upper-left-cornered storm cell (Fig. 4.6h vs. Fig. 4.6g). 

Similar as before, the “CNTL” experiment yields the best data assimilation results in 

terms of the recovery of the temperature structure of the whole storm systems. 

From Fig. 4.4b, it can be seen that after forty-five minutes of data assimilation, the 

use of the diagnostic pressure equation constraint (the “onlyDP” experiment) can help 

reduce the RMS error of the vertical velocity at roughly an order of 0.4 m s-1. The use of 

the mass continuity equation constraint can reduce it more at roughly an order of 1.0 m s-

1. The use of both equation constraints produces the most reduction with roughly an order 

of 1.4 m s-1. The decrease of the RMS error of the vertical velocity field by the use of 

equation constraints is for most vertical levels (above z=1.5km MSL). The most 

noticeable decreases are at the vertical levels above z=4.5km MSL. Fig. 4.7 shows the 

vertical velocity fields at z=6.0km MSL. For easy comparing, the difference of the 

vertical velocity field between each data assimilation experiment and the truth simulation 

are also plotted in Fig. 4.6. It can seen that at this time (after forty-five minutes of data 



122 

assimilation), the vertical velocity field is already recovered fairly well in all the four data 

assimilation experiments for the domain-centered storm cell although the use of the mass 

continuity equation constraint can still make some slightly improvements in this region. 

The most improvements are for the upper-left-cornered storm cell. Similar as before, the 

“CNTL” experiment again yields the best data assimilation results in terms of the 

recovery of vertical velocity field of the whole storm systems. 

To summary for this section, both the diagnostic pressure equation constraint and 

the mass continuity equation constraint have positive impact on the intermittent data 

assimilation.  In single time analysis or first one/two data assimilation cycles, the impact 

of the diagnostic pressure equation constraint is not as large as that of the mass continuity 

equation constraint. The mass continuity equation constraint can evidently improve the 

retrieval of wind fields, especially the vertical velocity, in single analysis step while the 

diagnostic pressure equation constraint only slightly improve the retrieval of the wind 

fields and the pressure field. The temperature field is also slightly adjusted by the 

diagnostic pressure equation constraint during the analysis process but this adjustment is 

assumed mainly to boost dynamic consistency among model variables and not necessary 

to produce a more close resemblance to the truth. After fifteen minutes of data 

assimilation (three cycles), the positive impact of the diagnostic pressure equation 

appears and becomes more evident after thirty-five minutes of data assimilation (seven 

cycles).  The mass continuity equation constraint can also improve the intermittent data 

assimilation results; however, its impact becomes a little bit less prominent after forty 

minutes data assimilation (eight cycles) than its direct impact on single time data analysis. 
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Including both the diagnostic pressure equation constraint and the mass continuity 

equation constraint yields the best data assimilation results. 
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Fig. 4.6. The perturbation potential temperature field at z=6.5km MSL for (a) the truth 
simulation, (b) the “CNTL” experiment, (d) the “NOEC” experiment, (e) the “onlyDP” 
experiment, (f) the “onlyMC” experiment; and the difference of the perturbation potential 
temperature field between each data assimilation experiment and the truth simulation at 
z=6.5km MSL for (c) the “CNTL” experiment, (g) the “NOEC” experiment, (h) the 
“onlyDP” experiment, (i) the “onlyMC” experiment . All the above plots are available at 
t=75 minutes into truth simulation (i.e. after forty-five minutes data assimilation). 
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Fig. 4.7. The vertical velocity field at z=6.0km MSL for (a) the truth simulation, (b) the 
“CNTL” experiment, (d) the “NOEC” experiment, (e) the “onlyDP” experiment, (f) the 
“onlyMC” experiment; and the difference of the vertical velocity field between each data 
assimilation experiment and the truth simulation at z=6.0km MSL for (c) the “CNTL” 
experiment, (g) the “NOEC” experiment, (h) the “onlyDP” experiment, (i) the “onlyMC” 
experiment . All the above plots are available at t=75 minutes into truth simulation (i.e. 
after forty-five minutes data assimilation). 

 

4.3.2.2 Sensitivities to the weighting coefficients 

In this section, eight more data assimilation experiments (as listed in Table 4.2 and 

described in Section 4.3.1.3 “Experimental design”) are conducted to test the sensitivity 

of the weighting coefficients of the diagnostic pressure equation constraint and the mass 

continuity equation constraint. These experiments are based on the “CNTL” experiment 
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that uses both the two constraints and yields the best data assimilation results as discussed 

in the above.  

Fig. 4.8 and Fig. 4.9 show the evolution of the RMS errors of all these experiments 

during the 1-h data assimilation period for all model fields. Following the practices in 

previous section, the RMS errors of the rain/snow/hail mixing ratio are substituted by the 

RMS error of simulated reflectivity, and the RMS error for V component of wind field is 

not shown as it evolves similar to the RMS error for U component of wind fields.  

Fig. 4.8 presents the sensitivities of the data assimilation to the weighting 

coefficient for the DP constraint. It can be seen that when the weighting coefficient for 

the DP constraint varies by five times, the assimilation results are very close to that 

produced by the “CNTL” experiment.  When the DP weighting coefficient is increased 

by twenty-five times, the data assimilation results are still acceptable and not far away 

from that of the “CNTL” experiment. When the DP weighting coefficient is decreased by 

twenty-five times, the data assimilation results are much worse than that from the 

“CNTL” experiment. This indicates that it should be cautious in choosing the DP 

weighting coefficient. Very small DP weighting coefficient should be avoided, as it might 

give the diagnostic pressure equation constraint much more share of the total cost 

function and then degrade the quality of the data assimilation. 

Fig. 4.9 presents the sensitivities of the data assimilation to the weighting 

coefficient for the MC constraint. It can be seen that when the weighting coefficient of 

the MC constraint varies by five times, the data assimilation results are very close to that 

of the “CNTL” experiment. When the MC weighting coefficient varies by twenty-five 

times, the data assimilation results are still comparable to that of the “CNTL” experiment. 
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Therefore, it can be concluded that the mass continuity equation constraint is not very 

sensitive to the weighting coefficient. 
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Fig. 4.8. The evolution of RMS error of model fields during the 1-h assimilation period 
for (a) U component of wind fields, (b) vertical velocity, (c) perturbation potential 
temperature, (d) pressure, (e) water vapor mixing ratio, (f) cloud water mixing ratio, (g) 
cloud ice mixing ratio, (h) simulated reflectivity from model rain/snow/hail mixing ratio. 
The solid red line is for the “CNTL” experiment, the magenta dashed line is for the 
“CNTL_DP*5” experiment, the blue dashed line is for the “CNTL_DP/5” experiment, 
the cyan dashed line is for the “CNTL_DP*25” experiment and the green dashed line is 
for the “CNTL_DP/25” experiment. 
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Fig. 4.9. The evolution of RMS error of model fields during the 1-h assimilation period 
for (a) U component of wind fields, (b) vertical velocity, (c) perturbation potential 
temperature, (d) pressure, (e) water vapor mixing ratio, (f) cloud water mixing ratio, (g) 
cloud ice mixing ratio, (h) simulated reflectivity from model rain/snow/hail mixing ratio. 
The solid red line is for the “CNTL” experiment, the magenta dashed line is for the 
“CNTL_MC*5” experiment, the blue dashed line is for the “CNTL_MC/5” experiment, 
the cyan dashed line is for the “CNTL_MC*25” experiment and the green dashed line is 
for the “CNTL_MC/25” experiment. 
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4.3.3 Conclusions 

The impact of the diagnostic pressure equation constraint is investigated using an 

idealized tornadic supercell thunderstorm case. A 1-h data assimilation period and radar 

velocity observations from two radars are used for all the experiments. For comparison 

purpose, the impact of the mass continuity equation constraint is also examined. 

It is demonstrated that the use of the diagnostic pressure equation constraint can 

improve the data assimilation results after a period of data assimilation (in this idealized 

case, it takes about thirty-five minutes, i.e. seven cycles, to get better recovery of all 

model variables).  The impact of the diagnostic pressure equation constraint at single 

analysis step or first one/two assimilation cycles is not as large as that of the mass 

continuity equation constraint. While in single analysis step, the mass continuity equation 

constraint can evidently improve the retrieval of wind fields, especially the vertical 

velocity field, the diagnostic pressure equation constraint slightly improves the retrieval 

of the wind fields and the pressure field. The temperature field is also slightly adjusted by 

the diagnostic pressure equation constraint during the analysis process. This adjustment is 

assumed to boost dynamic consistency among model variables.  These dynamic-balance-

improved analyses help produce a better data assimilation results after several 

assimilation cycles. On the other hand, the impact of the mass continuity equation 

constraint becomes less prominent at the later stage of the assimilation period. Including 

both the diagnostic pressure equation constraint and the mass continuity equation 

constraint yields the best data assimilation results. 

The sensitivity tests show that the mass continuity equation constraint is less 

sensitive to the choice of weighting coefficient while the diagnostic pressure equation 
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constraint is more sensitive and very small weighting coefficient of it can produce poor 

data assimilation results. Therefore, it should be cautious to determine the weighting 

coefficient of the diagnostic pressure equation constraint and very small weighting 

coefficient should be avoided. On the other hand, in practice, the weighting coefficient 

for the diagnostic pressure equation constraint might be a little bit different from case to 

case because the weighting coefficient is determined according to the magnitude of the 

diagnostic pressure equation constraint in cost function and this magnitude varies from 

case to case. A general rule is that this weighting coefficient should be within two order 

of magnitude of those used in the CNTL experiments. 

4.4 The 8 May 2003 Oklahoma City tornadic supercell storm case 

4.4.1 The case  

On the late afternoon of 8 May 2003, a major tornado hit the southern Oklahoma 

City metropolitan area (Fig. 4.10). It first touched down at Moore, a suburban city close 

to and south of Oklahoma City, then traveled east north-east through south of Oklahoma 

City to Choctaw. The life span of the tornado is about 28 minutes from 2210UTC (1610 

CDT, Central Daylight-saving Time) to 2238UTC. It caused up to F4 (Fujita scale) 

damages but no death. The tornado is thereafter named as the OKC tornado and the 

parent storm as the OKC tornadic thunderstorm.  

The synoptic environment on 8 May 2003 over Oklahoma is very favorable for the 

development of supercell storms and even tornados, as has been discussed by Hu and 

Xue (2007), Romine et al. (2008). The low-level southerly wind flowed over Oklahoma 

all the day. An evident north-south-oriented dryline moved eastward approaching Moore, 

Oklahoma. A large instability with a 4004 J kg-1 CAPE (convective available potential 
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energy) , a 1 J kg-1 CIN (convective inhibition) and about 25 m s-1 vertical shear over the 

lowest 6km presented in the 1800 UTC 8 May Norman, Oklahoma (OUN) sounding. All 

these conditions indicate that there is a high possibility for tornadic supercell 

thunderstorms to develop. 

 

 
Fig. 4.10. The Damage Path Map for the 8 May 2003 Oklahoma City Area Tornadoes 
(National Weather Service, Norman). 

 

At about 2030UTC, a first sign of the OKC tornadic storm showed up as a weak echo 

at the KTLX radar reflectivity field. By 2101UTC, the storm developed into a strong cell. 

In the following one hour, the storm grew rapidly and moved northeastward. By 

2201UTC (see Fig. 4.11), the storm bore an obvious hook echo signature at its 

southwestern end. The hook echo was then located at northwest of Moore, just several 
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miles away. The pronounced hook echo signature sustained until at least 2235UTC while 

the parent supercell storm propagated east northeastward. The storm weakened since 

2240UTC and dissipated by 0020UTC 9 May. In addition to OKC tornadic thunderstorm, 

there are three other short-lived storms (not shown). Here we will just focus on the major 

thunderstorm. Fig. 4.2 shows the general evolution of the major thunderstorm roughly 

every thirty minutes as observed by the KTLX radar at the 1.45 elevation angle. 
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Fig. 4.11. Regions of radar echoes observed by the KTLX radar at the 1.45 elevation 
angle, from 2131 to 2159 UTC 8 May 2003. The contours are plotted every 10dBz, 
starting from 45dBz. The plus sign indicates the reflectivity center, which is followed by 
its corresponding time in UTC. 
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4.4.2 Experimental design 

All experiments are conducted with a horizontal resolution of 3km. There are 195 

grid points in both x and y directions. In the vertical direction, a stretched grid scheme is 

used. It contains 53 layers with an average grid spacing of 400m, stretching from about 

20 m at the surface to 770m at the model top. The model domain is shown in Fig. 4.12. It 

covers nearly the whole Oklahoma. The evolution of the 8 May 2003 Oklahoma City 

tornadic supercell thunderstorm is roughly at the center of the domain. This big domain 

configuration will help alleviate the negative impact of boundary problems. The four 

WSR-88D radars KTLX, KVNX, KINX, KFDR and their associated coverage region are 

also shown in Fig. 4.12. The wavelet line near the KTLX radar is the damage path of the 

8 May 2003 OKC tornado. 

The ARPS system is used as the prediction model. Lin 3-category ice microphysics 

scheme as well as a 1.5-order turbulent kinetic energy subgrid parameterization is 

adopted for the model run. A wave radiation condition is applied at the top boundary and 

rigid-wall conditions are applied to the bottom boundary. The lateral boundaries are 

forced externally by the forecast from a 9-km data assimilation experiment. This 9-km 

data assimilation experiment is done in the same way as in Hu and Xue (2007). It 

assimilates rawinsonde data and wind profiler data every 1hr for a total of six hours. The 

Eta model analysis and forecast provide the background and lateral boundaries for the 9-

km experiment. 
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Fig. 4.12. The model domain with county boundaries. The four radars as well as their 
coverage circle are also shown. The wavelet line near KTLX radar shows the damage 
path of the 8 May 2003 OKC tornado. 

 

The 8 May 2003 Oklahoma City tornadic thunderstorm case is observed by four 

WSR-88D radars (KTLX, KVNX, KINX, KFDR, Fig. 4.12) in NEXRAD network. The 

KTLX radar is close to the storm, it observes the lower to middle parts of the storm, and 

the other three radars KINX, KVNX, KFDR observe the mid to higher part of the storm. 

Observations from all these four radars will help produce a more complete picture of the 

thunderstorm as discussed in Chapter 2. A quality control procedure will first be applied 

to the radar data before it is ingested into the data assimilation step. This includes clutter 

removal, velocity dealiasing, etc. After the quality check and processing, the radar data 

will be projected into the model grid space in the form of a series of column observations. 
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This will be referred as “gridded” radar data. When ingesting the radial velocity data into 

model, the abnormal large values of absolute difference between the gridded radar 

observations with the background counterparts will be denied by the ARPS 3DVAR 

subsystem. For the reflectivity data from multiple radars, a mosaic is made before starting 

the cloud analysis subsystem. 

The radial velocity data and reflectivity data are both assimilated from all the four 

radars mentioned in the above. In order to mitigate the negative impact of small spurious 

cells, the noisy data in the radar observation can be discarded according to a user-

specified reflectivity threshold. In our research, only the data where the observed 

reflectivity is larger than 25 dBZ is used for the data assimilation experiments. The 

CNTL experiment started at 2100UTC when a strong cell is observed by the KTLX radar. 

After assimilating the radial velocity data and the reflectivity data, a 5-minute forecast is 

made using the ARPS model and new radar data is ingested into the model again. This 

process is repeated until a final analysis is made at 2140UTC after a total of forty minutes 

data assimilation with a frequency of every five minutes. At the end of the assimilation, 

there are thirty minutes left before the OKC tornado first touches down near the Moore 

area. The final analysis is used to launch a 2h-20min forecast. The forecast stops at 

000UTC 9 May 2003. At that time, the storm is in its later dissipating stage.  

Four different data assimilation experiments (see Table 4.3) are conducted to 

demonstrate the impact of the diagnostic pressure equation constraint and the sensitivity 

to its associated weighting coefficient. The aforementioned ARPS 3DVAR system and 

assimilation configurations/procedures are applied to all the four experiments except that 

the first experiment, the “NODP” experiment, does not use the diagnostic pressure 
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equation constraint while the other three use the constraint. The mass continuity equation 

constraint is included for all experiments. The last three experiment, the “DP7E-7”, 

“DP7E-8” and  “DP7E-9” experiments differ only on the weighting coefficients they used 

for the DP constraint. The specific coefficient values are lists in Table 4.3 and also 

contained within the experiment names. 

Table 4.3. List of experiments 
Expr. Name NODP DP7E-7 DP7E-8 DP7E-9 
Description DP constraint is 

not used 
DP weighting 
coefficient is 
7.0E-7 

DP weighting 
coefficient is 
7.0E-8 

DP weighting 
coefficient is 
7.0E-9 

 
 

Since no observations other than radar data can resolve the storm-scale features in a 

high spatial and temporal resolution, the reflectivity observations at 1.45 tilt from KTLX 

radar are used to assist the evaluation of the forecast quality of the three experiments.  

4.4.3 Results of experiments 

4.4.3.1 The analyses of the experiments 

For the idealized case study in Section 4.3, we can compare the data assimilation 

results to the truth simulation to examine the impact of the diagnostic pressure equation 

constraint. However, for real data experiments here, the truth is unknown so it is difficult 

to evaluate directly the quality of analyses from the four different data assimilation 

experiments. Some methods are introduced to check the dynamic consistency among 

model variables in an analysis. First, the momentum checking method is used and it does 

yield smaller Er value for experiments using the diagnostic pressure equation constraint 

(the DP7E-7, DP7E-8 and DP7E-9 experiments) than the experiment not using it (the 
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NODP experiment). This partially indicates that a more dynamic consistent analysis is 

achieved by the use of the diagnostic pressure equation constraint. The “acoustic wave 

checking” method similar to Hu et al (2006b) is also used. It shows that the acoustic 

oscillation amplitude, presented in the time series of the pressure field (not shown), is 

reduced in the “DP7E-7”, “DP7E-8” and “DP7E-9” experiments over the “NODP” 

experiment. This partially justifies in a different way that the dynamic consistency is 

improved by the including of the  constraint.  

However, in spite of the above checking, it is still interesting to examine how the 

model fields are affected in single analysis by the diagnostic pressure equation constraint. 

Fig. 4.13 shows the vertical distribution of the RMS errors between the analyses from the 

“NODP” experiment and each of the “DP7E-7”, “DP7E-8”, “DP7E-9” experiments valid 

at the beginning of the data assimilation (2100 UTC 8 May 2003) when the backgrounds 

for all the four experiments are the same. The statistics is calculated only in rainy area 

(where the observed reflectivity mosaic is larger than 5dBZ). It can be seen from Fig. 

4.13 that the use of the diagnostic pressure equation constraint leads to evident difference 

in the analysis. The difference in the horizontal wind fields is noticeable in nearly entire 

vertical direction. The difference in the vertical velocity, the potential temperature and 

water vapor fields mainly lie in mid-upper levels (5km~10km, 3km~8km and 

2.5km~7.5km respectively).  Fig. 4.14 shows the U component of perturbation wind 

fields, vertical velocity, perturbation potential temperature and water vapor mixing ratio 

at Z=7km MSL for all the four experiments. It can be seen that when the diagnostic 

pressure equation constraint plays more important role in the cost function (i.e. with 

smaller weighting coefficient), more analysis differences present between the experiment 
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that imposes the constraint and the “NODP” experiment that does not use the constraint. 

The impact of the diagnostic pressure constraint on analysis includes controlling noise 

introduced by the ingestion of radar observations (Fig. 4.14f,g,h vs. Fig. 4.14e) and 

applying some kind of smoothness (Fig. 4.14j,k,l vs. Fig. 4.14i and Fig. 4.14n,o,p vs. Fig. 

4.14m). It is also clear that when the diagnostic pressure equation constraint plays more 

important role in the cost function (from Fig. 4.14b to Fig. 4.14d), smaller perturbation of 

U component of wind fields is analyzed (Fig. 4.14b,c,d vs. Fig. 4.14a). This indicates that 

the observation impact might be traded off with dynamic consistency among model 

variables.  
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Fig. 4.13. The vertical distribution of the difference, in terms of the RMS errors, between 
the analyses from the “NODP” experiment and each of the “DP7E-7”(red line) , 
“DP7E8”(green line), “DP7E-9”(blue line) experiments valid at 2100 UTC 8 May 2003 
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(the beginning of the data assimilation). The statistics is calculated only in rainy area 
(where the observed reflectivity mosaic is larger than 5dBZ). 
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Fig. 4.14. The U component of perturbation wind fields, vertical velocity, perturbation 
potential temperature and water vapor mixing ratio at z=7km MSL at 2100 UTC 8 May 
2003. (a),(e),(i),(m) for the “NODP” experiment, (b),(f),(j),(n) for the “DP7E-7” 
experiment, (c),(g),(k),(o) for the “DP7E-8” experiment, (d),(h),(l),(p) for the “DP7E-9” 
experiment. 
 
 

After forty minutes of data assimilation at 2140UTC 8 May 2003, the analysis 

differences among the four experiments become more noticeable as Fig. 4.15 shows 



139 

much larger RMS errors in all vertical levels. The most noticeable difference in the 

vertical velocity still lies in the mid-upper levels (about 5km~10km).  The difference in 

the potential temperature field increases with altitude. Fig. 4.16 further shows the U 

component of perturbation wind fields, vertical velocity, perturbation potential 

temperature and water vapor mixing ratio at z=7km MSL. The most noticeable difference 

is that the southeast and southwest updraft centers (A and B in Fig. 4.16e) get stronger in 

the data assimilation experiments that use the diagnostic pressure equation constraint (Fig. 

4.16f,g,h vs. Fig. 4.16a). The southeast warm center (D in Fig. 4.16i) and the warm 

tongue (E in Fig. 4.16i) also get warmer. The difference in other fields is not so evident, 

but still distinguishable. 

Because there is no simple balance for storm-scale phenomena, it is difficult to 

explain what kind of balance has been build up by the use of the diagnostic pressure 

equation constraint. However, the results show that the impact of the constraint on the 

analysis is very noticeable. The direct verification of whether this impact is positive is 

limited since there is no reliable high-resolution analysis of the storm. However, From 

the idealized case study in Section 4.3, where the truth is known, it has been 

demonstrated that the diagnostic pressure equation constraint does have positive impact 

on the intermittent data assimilation. 
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Fig. 4.15. The vertical distribution of the RMS errors between the analyses from the 
“NODP” experiment and each of the “DP7E-7”(red line) , “DP7E8”(green line), “DP7E-
9”(blue line) experiments valid at 2140 UTC 8 May 2003 (the beginning of the data 
assimilation). The statistics is calculated only in rainy area (where the observed 
reflectivity mosaic is larger than 5dBZ). 
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Fig. 4.16. The U component of perturbation wind fields, vertical velocity, perturbation 
potential temperature and water vapor mixing ratio at z=7km MSL at 2140 UTC 8 May 
2003. (a),(e),(i),(m) for the “NODP” experiment, (b),(f),(j),(n) for the “DP7E-7” 
experiment, (c),(g),(k),(o) for the “DP7E-8” experiment, (d),(h),(l),(p) for the “DP7E-9” 
experiment. 

 

4.4.3.2 The forecasts of the experiments 

From the final analysis at 2140UTC, a 2h 20min forecast is made for all the four 

experiments. To evaluate the quality of the forecast, simulated reflectivity, using 

reflectivity forward operator as in Tong and Xue (2005), is produced from the forecasts 
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and then projected to the 1.45 elevation angle in the KTLX radar observation space. 

These emulated radar echoes are then compared with the observed reflectivity from 

KTLX radar at the same elevation angle.  

Fig. 4.17 shows the evolution of the emulated radar echoes every thirty minutes from 

all the four experiments. It can be seen the general evolution of the OKC tornadic 

thunderstorm is predicted very well by the “DP7E-7”, “DP7E-8” and “DP7E-9” 

experiments (Fig. 4.17b,c,d). The storm intensifies into its mature stage by 2200UTC. 

The mature stage maintains until 2235UTC. Since 2240UTC, the thunderstorm starts to 

weaken but in a slow pace. After 2330UTC, the storm enters its later dissipating stage 

and weakens quickly. The “NODP” experiment also makes a reasonable forecast. Similar 

to the observed evolution, the storm also experiences the intensifying stage, the mature 

stage and the dissipating stage during the whole 2h 20min forecast period. However, Fig. 

4.17a shows a very quick weakening process since 2300UTC. After 2340UTC (not 

shown in the figure), there is no more high reflectivity area (>45dBZ). Therefore, 

regarding the prediction of the general evolution of the OKC tornado thunderstorm, the 

use of the diagnostic pressure equation constraint produces better results. The 

experiments using different weighting coefficients yield little difference in the forecast 

except that the “DP7E-9” experiment predicts a strong spurious storm cells since 

2340UTC. 
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Fig. 4.17. Regions of predicted radar echoes at the 1.45 elevation angle, from 2130UTC 8 
May 2003 to 0000 UTC 9 May 2003 every 30 minutes, by the experiments: (a) NODP, 
(b) DP7E-7, (c) DP7E-8, (d) DP7E-9. The contours are plotted every 10dBz, starting 
from 45dBz. The plus sign indicates the reflectivity center and is followed by the 
corresponding time in UTC.  

 

To quantitatively evaluate the quality of the forecast, the ETS (Equitable Threat Score, 

Schaefer 1990)  of composite reflectivity against reflectivity mosaic from the four radars 

is calculated for all the experiments. Fig. 4.18 shows the results for the 5-, 15-, 30- and 

45-dBZ thresholds. It can be seen that for the 5-dBZ threshold, the ETS values of the 

experiments “DP7E-7”, “DP7E-8”, “DP7E-9” are generally better than the “NODP” 

experiment except during the period from about 2220UTC to 2300UTC, when there is 

almost no forecast score in all experiments due to relative large storm location errors.  

For the 15-and 30-dBZ threshold, the ETS values of the experiments “DP7E-7”, “DP7E-

8”, “DP7E-9” are much better than the “NODP” experiment after 2255UTC.  For the 45-

dBZ threshold, a better score is produced after 2330UTC for the experiments “DP7E-7”, 
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“DP7E-8”, “DP7E-9” over the “NODP” experiment, which corresponds to a better 

forecast of the storm dissipating stage.  Therefore, it can be confirmed that the use of the 

diagnostic pressure equation constraint helps improve the forecast in term of the 

prediction of the general evolution of the major thunderstorm. The experiments adopting 

different weight coefficients produce similar forecasts. The experiment using the smallest 

weight coefficient (i.e. 7.0E-9) produces a small strong spurious cell at the later 

dissipating stage of the major storm, but in spite of that, the forecast is still reasonable 

and not far from that of the “DP7E-7” and “DP7E-8” experiments. 
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Fig. 4.18. Equitable threat scores of predicted composite reflectivity for the (a) 5-, (b) 15-
, (c) 30-, and (d) 45-dBZ thresholds. The black line is from the “NODP” experiment, the 
red line is form the “DP7E-7” experiment, the green line is from the “DP7E-8” 
experiment, the blue line is from the “DP7E-9” experiment. 
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In order to further examine the difference among the experiments, the maximum 

vertical vorticity in the low two kilometers of the atmosphere is computed from the 

forecast every one minute. The time series is then plotted in Fig. 4.19. It can be seen that 

the experiments (“DP7E-7”, “DP7E-8”, “DP7E-9”) using the diagnostic pressure 

equation constraint generally produce larger low-level vertical vorticity than the “NODP” 

experiment during the whole forecast period. What does it mean by a larger vertical 

vorticity? As a demonstration, Fig. 4.20 plots the vertical vorticity field at 2220UTC, 

which is during the tornado touchdown period. Fig. 4.20a,c,e,g present the vertical 

vorticity at z=3km MSL while Fig. 4.20b,d,f,h show the vertical vorticity in the cross 

sections with largest vertical vorticity, i.e. along the lines A-B in their corresponding left 

panels. It can be seen that the vertical vorticity at z=3km MSL predicted by the “DP7E-7”, 

“DP7E-8” and “DP7E-9” (Fig. 4.20c,e,g) experiments is larger than that predicted by the 

“NODP” experiment (Fig. 4.20a). The vertical cross sections (Fig. 4.20b,d,f,h) show 

more difference in the vertical vorticity structure among different experiments. The 

experiments using the diagnostic pressure equation constraint predict a deeper column of 

high vertical vorticity (> 0.008 s-1), extending from as low as 1.2 kilometers to as high as 

9.5 kilometers. The region of high vertical vorticity (> 0.008 s-1) predicted by the 

“NODP” experiment is mainly in the mid-upper part of the atmosphere, roughly from 4.5 

kilometers to 9.5 kilometers.  

Our further examination shows that the deeper rotated vortex column with larger 

vertical vorticity generally means a better-defined supercell structures. As an example, 

Fig. 4.21 shows the simulated reflectivity field and the wind vectors at z=3km MSL for 

all the four experiments at 2200UTC. It can be seen that the “DP7E-8” experiment (Fig. 
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4.21c) successfully predicts the hook echo signature at this time. The reflectivity hook 

echo, the clearly visible rotation of the horizontal wind vectors, the area of very large 

vertical vorticity and the intense updraft (not shown) are very well defined to support 

each other. This is a very strong signal indicating the location of the mesocyclone 

associated with the OKC major tornado. The “DP7E-7” and the “DP7E-9” experiments 

(Fig. 4.21b, d) produce similar forecasts. The hook echo signs are also distinguishable in 

both experiments. However, this conclusion can barely be drawn from the forecast of the 

“NODP” experiment (Fig. 4.21a). The hook echo signature is very weak. The rotation in 

the wind fields near the storm center is much mild than that predicted by the other three 

experiments that all use the diagnostic pressure equation constraint. Therefore, it can be 

concluded that the use of the diagnostic pressure equation constraint helps make a better 

forecast in terms of the mesocyclone rotation and the supercell structures. 
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Fig. 4.19. The time series of maximum vertical vorticity below two kilometers from 
2140UTC 8 May 2003 to 0000UTC 9 May 2003 every one minute. The horizontal axis 
shows the time in UTC, the vertical axis shows the vertical vorticity value in unit of s-1. 
The black line is for the “NODP” experiment, the red line is for the “DP7E-7” 
experiment, the green line is for the “DP7E-8” experiment, the blue line is for the 
“DP7E-9” experiment. 
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Fig. 4.20. The vertical vorticity (in unit of 10-5 s-1) at 2200UTC 8 May 2003 predicted by 
the four experiments. (a) and (b) are for the “NODP”, (c) and (d) are for the “DP7E-7”, 
(e) and (f) are for the “DP7E-8”, (g) and (h) are for the “DP7E-9”. (a), (c), (e) and (g) are 
at z=3km MSL; (b), (d), (f) and (h) are the vertical cross sections along the lines A-B in 
their left corresponding panel respectively.  
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Fig. 4.21. The reflectivity field and wind vectors at z=3km MSL at 2200UTC 8 May 
2003 predicted by the experiments (a) NODP, (b) DP7E-7, (c) DP7E-8, (d) DP7E-9. In 
order to indicate the possible location of mesocyclone, the vertical vorticity larger than 
0.005s-1 is also plotted in (a) and (b). 

 

4.4.4 Conclusions 

In this case study, we apply the updated ARPS 3DVAR scheme to the assimilation 

and forecast of the 8 May 2003 Oklahoma City tornadic supercell thunderstorm in order 
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to investigate the impact of the diagnostic pressure equation constraint. Four data 

assimilation experiments are conducted with different weighting coefficients for the 

diagnostic pressure equation constraint (the “NODP” experiment does not use the 

constraint). All the experiments assimilate the same amount of observations from the four 

NEXRAD radars and impose the mass continuity equation constraint. 

It is shown that in single analysis step, the diagnostic pressure equation constraint can 

help control the noise introduced by the assimilation of radar observations and couple 

different model variables to boost dynamic consistency. The “momentum checking” and 

“acoustic wave checking” methods are also used to partially justify that the constraint 

does improve dynamic balance among model variables in single analysis step. After 

forty-minutes of intermittent data assimilation, the diagnostic pressure equation constraint 

evidently affects the final analysis. The differences generally lie in the mid-upper levels 

and larger vertical velocity and potential temperature are produced by the use of the 

constraint. Because there is no reliable high-resolution analysis of the storm, it is not easy 

to tell directly which analysis is better. The evaluation of the benefit of this constraint to 

radar data assimilation in this real case is then further examined mainly based on the 

ensuing forecast. 

It is demonstrated that the experiments using the diagnostic pressure equation 

constraint predict the intensification and the dissipation process of the storm in a good 

timing and location manner. On the other hand, the “NODP” experiment, which does not 

use the constraint, predicts a very fast dissipating stage for the storm, which is not 

supported by the observations. During the whole forecast period, the experiments using 

the constraint generally predict high low-level vertical vorticity than the “NODP” 
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experiment. Further investigation shows that this is the reflection of a better-predicted 

supercell structure in terms of the hook echo sign, mesocyclone rotation, and updraft 

intensity. Therefore, it is concluded that the use of the constraint improves the forecast in 

the general evolution and the supercell characteristics of the major thunderstorm. The 

experiments adopting different weighting coefficients generate similar results. This 

suggests that the diagnostic pressure equation constraint is not very sensitive to the 

weighting coefficients, although very small values should still be avoided as illustrated 

by the idealized case study in Section 4.3. 

4.5 The 5 May 2007 Greensburg tornadic supercell storm case 

4.5.1 The case 

The general background for this case has been described in detail in the real case 

part in Chapter 2 (specifically, in Section 2.3.3) and will not be repeated here. 

4.5.2 Experimental design 

The general rules and data assimilation configurations for the design of experiments 

is also discussed thoroughly in the real case part in Chapter 2 (specifically, in Section 

2.3.4) and will not be repeated here. In order to investigate the impact of the diagnostic 

pressure equation constraint, more data assimilation experiments are conducted. Table 

4.4 lists all experiments performed for the 5 May 2007 Greensburg case. All the 

experiments assimilate the radial velocity data and impose the mass continuity equation 

constraint. 
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Table 4.4. List of experiments. 

Experiment 
Name 

DP weighting 
 coefficient  

Use of  
reflectivity 

Vr_NODP  No 

Vr_DP_5.0E-8 5.0E-8 No 

Vr_DP_1.0E-8 1.0E-8 No 

Vr_DP_5.0E-9 5.0E-9 No 

Vr_DP_2.5E-9 2.5E-9 No 

VrZ_NODP  Yes 

VrZ_DP_5.0E-8 5.0E-8 Yes 

VrZ_DP_1.0E-8 1.0E-8 Yes 

VrZ_DP_5.0E-9 5.0E-9 Yes 

VrZ_DP_2.5E-9 2.5E-9 Yes 

 

The first five experiments examine the impact of the diagnostic pressure equation 

constraint on experiments assimilating radial velocity data alone, a similar situation as the 

idealized case study in Section 4.3. The last five experiments examine the constraint’s 

impact on experiments assimilating both the radial velocity data and the reflectivity data. 

It should be noted that the “Vr_NODP” and “VrZ_NODP” experiments here are the same 

as the “VrOnly” and “Vr&Rf ”experiments in Chapter 2 Section 2.3.5. 
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4.5.3 Results of experiments 

4.5.3.1 The impact of the constraint on the experiments assimilating velocity data 

alone 

4.5.3.1.1 The data assimilation results of the experiments 

Similar to the idealized case study in Section 4.3, the impact of the diagnostic 

pressure equation constraint at the first analysis is not easy to demonstrate. The 

adjustment in model fields is not very obvious. There is barely any pattern or feature 

difference. However, after 1-h data assimilation, the impact can be seen more clearly. Fig. 

4.22 shows the divergence, relative humidity and the cloud water mixing ratio at z=6km 

MSL valid at 0230UTC. It can be seen that at the end of 1-h data assimilation, the 

“Vr_NODP” experiment (Fig. 4.22a) produces three moist centers that are saturated or 

almost saturated. The locations of moist centers correspond well to the observed 

reflectivity cells as shown in Fig. 2.19a. At the location of the southernmost center, the 

major storm has already partially developed (Fig. 2.20a and Fig. 4.23a) at this time, but 

with weaker reflectivity than observation at z=2km MSL. The other two moist centers 

have not developed into distinguishable storm cells yet (Fig. 4.23a).  

For the “Vr_DP_1.0E-8” experiment (Fig. 4.22c), after 1-h data assimilation, it also 

produces several moist centers. The three major ones correspond to that in Fig. 4.22a but 

cover broader area and are all saturated. There exists large amount of cloud water co-

located with all the three major moist centers. At z=6km MSL, the storm cells have 

developed rather well in these three locations (Fig. 4.23c). The major storm covers 

broader area. The “Vr_DP_5.0E-9” and “Vr_DP_2.5E-9” experiments (Fig. 4.22d,e; Fig. 

4.23d,e) produces very similar results to that of the “Vr_DP_1.0E-8” experiment except 
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that the westernmost storm cell develops stronger in the “Vr_DP_5.0E-9” and 

“Vr_DP_2.5E-9” experiments. For the “Vr_DP_5.0E-8” experiment, although the 

westernmost and the northernmost storm cell do not develop yet (Fig. 4.22b), it already 

produces relative broad area of saturated moist air co-located with large amount of cloud 

water, which speeds up the spin-up problem than the “Vr_NODP” experiment. It will be 

discussed later. 
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Fig. 4.22. The divergence (shaded), relative humidity (black contours) and the cloud 
water mixing ration (red contours) at z=6km MSL valid at 0230UTC for the experiments 
(a) Vr_NODP, (b) Vr_DP_5.0E-8), (c) Vr_DP_1.0E-8, (d) Vr_DP_5.0E-9 and (e) 
Vr_DP_2.5E-9.  
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Fig. 4.23. The simulated reflectivity at z=6km MSL valid at 0230UTC for the 
experiments (a) Vr_NODP, (b) Vr_DP_5.0E-8), (c) Vr_DP_1.0E-8, (d) Vr_DP_5.0E-9 
and (e) Vr_DP_2.5E-9. 
 
 
 

Overall, it is demonstrated that by imposing the diagnostic pressure equation 

constraint, the recovered storm rainfall pattern is more close to the observed one at the 

end of the data assimilation and the spin-up problem is evidently reduced. This impact is 

also found in the idealized case study in Section 4.3 where it is demonstrated that the use 

of the diagnostic pressure equation constraint evidently reduce the RMS error of 

reflectivity after several data assimilation cycles. Therefore, it is illustrated that the use of 

the diagnostic pressure equation constraint helps build up a better initial condition after 1-

h data assimilation of radial velocity data. 
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4.5.3.1.2 The forecast results of the experiments 

It has been shown that the use of diagnostic pressure equation constraint does 

improve the analysis after 1-h intermittent data assimilation for this case. From the 

improved analyses, better forecasts should be expected. Fig. 4.24 shows the general 

evolution of the simulated reflectivity, the horizontal wind vector and the vertical 

vorticity at z=2km MSL from the forecast of the “Vr_DP_1.0E-8” experiment. It can be 

seen that at the end of data assimilation, the major storm develops stronger reflectivity 

than that from the “Vr_NODP” experiment (Fig. 4.24a vs. Fig. 2.20a) and closer to the 

observation (Fig. 2.19a). North of the major storm, a storm cell also develops in the 

“Vr_DP_1.0E-8” experiment (Fig. 4.24a). Although it is much weaker than the 

observation (Fig. 2.19a) at z=2km MSL, it has developed rather well at upper levels and 

has extended to low levels. On the contrary, the “Vr_NODP” experiment completely miss 

this cell (Fig. 2.20a) at this time. After thirty minutes at t=0300UTC (Fig. 4.24d), the 

major storm cells and other observed storm cells develop very well at z=2km MSL in the 

“Vr_DP_1.0E-8” experiment. On the other hand, the “Vr_NODP” experiment is still 

during rainfall spin-up period (Fig. 2.20d). In the next half hour, both the “Vr_DP_1.0E-

8” and “Vr_NODP” experiments predict the major storm very well in terms of the 

moving path and the rainfall pattern. The major storm coverage area predicted by the 

“Vr_DP_1.0E-8” experiment is a little bit broader than that by the “Vr_NODP” 

experiment and closer to the observation. Both experiments generate some strong 

spurious cells at the later half hour forecasts. However, this is not our main concern. 

To quantitatively evaluate the above two forecasts, the ETS of reflectivity at 

z=2138m MSL (the model level closest to z=2km) is computed and shown in Fig. 4.25. 
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The ETS for the experiments “Vr_DP_5.0E-8”, “Vr_DP_5.0E-9” and “Vr_DP_2.5E-9” 

are also shown in Fig. 4.25 and will be discussed later. It can be seen that for low 

reflectivity threshold (5-dBZ and 15dBZ, Fig. 4.25a,b), the “Vr_DP_1.0E-8” experiment 

(the red line) yields much higher scores than the “Vr_NODP” experiment (the black line), 

which agrees well with our subjective discussions in the above.  For the 30-dBZ and 

45dBZ thresholds, the scores of “Vr_DP_1.0E-8” experiment (the red line) is higher than 

that of the “Vr_NODP” experiment (the black line) during the period of 

0230UTC~0300UTC. After about 0300UTC, the scores of “Vr_DP_1.0E-8” experiment 

are lower than that of the “Vr_NODP” experiment. This is because, as mentioned before, 

during the last half hour of forecast, both experiments generates strong spurious storm 

cells and the spurious cells are stronger and broader in the forecast of the “Vr_DP_1.0E-

8” experiment. Considering the forecast of the major storm, the “Vr_DP_1.0E-8” 

experiment still outperforms the “Vr_NODP” experiment. 

To examine the forecast results of the experiments with different weighting 

coefficients, Fig. 4.26, Fig. 4.27 and Fig. 4.28 show the general evolution of the 

simulated reflectivity, the horizontal wind vector, the vertical vorticity at z=2km MSL for 

the experiments “Vr_DP_5.0E-8”, “Vr_DP_5.0E-9” and “Vr_DP_2.5E-9” respectively. 

The corresponding ETS for these experiments are shown in Fig. 4.25.  It can be seen that 

changing weighting coefficients does not change the forecast significantly. This indicates 

that the data assimilation and the forecast are not very sensitive to the weighting 

coefficient of the diagnostic pressure equation constraint. However, it is also noticeable 

that the “Vr_DP_2.5E-9” experiment produces much more spurious storm cells than 

other experiments. It supports our previous conclusion that a small weighting coefficient 



157 

for the diagnostic pressure equation constraint should be used very carefully. The 

comparison of the ETS of these experiments over the “Vr_NODP” experiment leads to 

similar conclusions as the previous comparison of the ETS of the “Vr_DP_1.0E-8” 

experiment over the “Vr_NODP” experiment. Therefore, it is demonstrated that the use 

of the diagnostic pressure equation constraint produces better forecast in terms of the 

general evolution of the storms. 
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Fig. 4.24. Radar reflectivity (dBZ), horizontal wind vector, and vertical vorticity 
(contours staring at 0.005s-1 with an interval of 0.005s-1) at 2 km MSL from the 
“Vr_DP_1.0E-8” experiment during 0230~0330UTC 5 May 2007 over western Kansas. 
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Fig. 4.25. Equitable threat scores of predicted composite reflectivity for the (a) 5-, (b) 15-
, (c) 30-, and (d) 45-dBZ thresholds. The black line is from the “Vr_NODP” experiment, 
the green line is from the “Vr_DP_5.0E-8” experiment, the red line is form the 
“Vr_DP_1.0E-8” experiment, the purple line is from the “Vr_DP_5.0E-9” experiment, 
the blue line is from the “Vr_DP_2.5E-9” experiment. 
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Fig. 4.26. Similar to Fig. 4.24, but for the “Vr_DP_5.0E-8” experiment. 
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Fig. 4.27. Similar to Fig. 4.24, but for the “Vr_DP_5.0E-9” experiment. 
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Fig. 4.28. Similar to Fig. 4.24, but for the “Vr_DP_2.5E-9” experiment. 
 
 



163 

To further examine the difference among the forecasts results of the experiments, 

the maximum vertical vorticity in the low two kilometers of the atmosphere is computed 

from the forecast every one minute. The time series is plotted in Fig. 4.29. It is shown 

that the “Vr_DP_1.0E-8” and “Vr_DP_5.0E-9” experiments predict larger low-level 

vertical vorticity than that from the “Vr_NODP” experiment during the entire forecast 

period, especially during the last half hour. The “Vr_DP_5.0E-8” experiment yields 

similar results as the “Vr_NODP” experiment and the “Vr_DP_2.5E-9” experiment 

predicts larger low-level vertical vorticity than the “Vr_NODP” experiment during the 

last half hour of the forecast period. Our examinations show that larger low-level vertical 

vorticity generally indicates stronger and deeper mesocyclone rotation column, similar to 

findings in previous 8 May 2003 OKC tornadic supercell thunderstorm case. As an 

example, Fig. 4.30 shows the vertical vorticity at the vertical cross section through the 

center of the major storm at y=253.5km at 0250UTC 5 May 2007 for all the five 

experiments discussed here. It can be seen that the “Vr_DP_1.0E-8” and “Vr_DP_5.0E-

9” experiments do predict stronger and deeper rotated column (Fig. 4.30c,d vs. Fig. 

4.30a).  The “Vr_DP_5.0E-8” experiment also performs a little bit better than the 

“Vr_NODP” experiment in terms of the prediction of mesocyclone rotation at this time. 

The “Vr_DP_2.5E-9” experiment outperforms the “Vr_NODP” experiment mainly in the 

last half hour of forecast period. 

Overall, the use of the diagnostic pressure equation constraint improves the data 

assimilation results. It significantly speeds up the rainfall spin-up. From these improved 

analyses, the general evolution of the storms and the mesocyclone rotation of the major 
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storm are predicted in a better fashion. The conclusion is quite similar to that drawn from 

the previous 8 May 2003 OKC tornadic supercell thunderstorm case. 
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Fig. 4.29. The time series of maximum vertical vorticity below two kilometers from 0230 
UTC to 0330UTC 5 May 2007 every one minute. The horizontal axis shows the time in 
UTC, the vertical axis shows the vertical vorticity value in unit of s-1. The black line is 
for the “Vr_NODP” experiment, the green line is for the “Vr_DP_5.0E-8” experiment, 
the red line is for the “Vr_DP_1.0E-8” experiment, the purple line is for the 
“Vr_DP_5.0E-9” experiment and the blue line is for the “Vr_DP_2.5E-9” experiment. 
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Fig. 4.30. The vertical vorticity (in unit of 10-5 s-1) at the vertical cross section through 
the center of the major storm at y=253.5km at 0250UTC 5 May 2007 for the experiments 
(a) “Vr_NODP”, (b) “Vr_DP_5.0E-8”, (c) “Vr_DP_1.0E-8”, (d) “Vr_DP_5.0E-9”, (e) 
“Vr_DP_2.5E-9”.  
 

4.5.3.2 The impact of the constraint on the experiments assimilating both wind data 

and reflectivity data 

We will now investigate the impact of the constraint on experiments assimilating 

both the radial velocity data and reflectivity data. Fig. 4.31 shows the reflectivity, 

horizontal wind vector and vertical vorticity at z=2km MSL from 0230UTC to 0330UTC 

for the “VrZ_NODP” experiment. It is shown that the assimilation of the reflectivity data 

in addition to the radial velocity data greatly reduce the spin-up of rainfall (Fig. 4.31a vs. 

Fig. 2.20a). However, since 0300UTC, the predicted major storm moves faster than that 

in the forecast of the “Vr_NODP” experiment, which is not very supported by the 

observation. In spite of this, the “VrZ_NODP” still makes a very reasonable forecast in 
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terms of the general evolution of the major storm. Based on this experiment, four more 

experiments are conducted by imposing the diagnostic pressure equation constraints with 

different weighting coefficients. 

The investigation of the analyses leads to similar findings as before. That is, the use 

of the constraint does introduce some adjustment on the analyses; however, without 

reliable high-resolution analysis of the storms, it is difficult to tell which analysis is better. 

Following previous practices, the benefit of this constraint is then examined mainly based 

on the ensuing forecast. Fig. 4.32 shows the reflectivity, horizontal wind vector and 

vertical vorticity at z=2km MSL from 0230UTC to 0330UTC for the “VrZ_DP_1.0E-8” 

experiment. It can be seen that there is no significant difference in the general evolution 

of the major storm between the “VrZ_DP_1.0E-8” experiment and the “VrZ_NODP” 

experiment (Fig. 4.31) in terms of reflectivity pattern. The computed forecast scores 

(ETS, not presented here) also shows little difference, seconding the above finding. 

However, there is evident difference in the predicted low-level mesocyclone rotation as 

partly indicated by larger maximum vertical vorticity in Fig. 4.32 c, d, e ,f than that in Fig. 

4.31 c, d, e, f. As a further demonstration, Fig. 4.33 shows the time series of the 

maximum vertical vorticity below two kilometers every one minute from 0230UTC to 

0330UTC for both the experiments. The results for other three experiments are also 

shown in Fig. 4.33 and will be discussed later. It is illustrated in Fig. 4.33 that since 

0245UTC and until the end of the forecast, the low level maximum vertical vorticity from 

the “VrZ_DP_1.0E-8” experiment (the red line) is much higher than that from the 

“VrZ_NODP” experiment (the black line). Our detailed examinations show that larger 

low-level vertical vorticity corresponds to a better-defined mesocyclone vortex, which is 
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stronger and deeper. This kind of behavior is very similar to our previous findings. As an 

example, Fig. 4.34 presents the vertical vorticity at the vertical cross section through the 

center of the major storm at y=259.5km at 0250UTC 5 May 2007. It is noticeable that the 

“VrZ_DP_1.0E-8” experiment predicts a stronger and deeper rotation column than the 

“VrZ_NODP” experiment.  

The experiments using different weighting coefficients from that used by the 

“VrZ_DP_1.0E-8” experiments produce similar results with that of the “VrZ_DP_1.0E-

8” experiments. Therefore, it can be concluded that for the experiments here, although the 

use of the diagnostic pressure equation constraint does not evidently improve the forecast 

of the general evolution of the major storm in terms of reflectivity pattern, it does help 

improve the forecast of the mesocyclone rotation associated with the observed 

Greensburg tornado. 
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Fig. 4.31. Similar to Fig. 4.24, but for the “VrZ_NODP” experiment. 
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Fig. 4.32. Similar to Fig. 4.24, but for the “VrZ_DP_1.0E-8” experiment. 
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Fig. 4.33. Similar to Fig. 4.29, but the black line is for the “VrZ_NODP” experiment, the 
green line is for the “VrZ_DP_5.0E-8” experiment, the red line is for the “VrZ_DP_1.0E-
8” experiment, the purple line is for the “VrZ_DP_5.0E-9” experiment, the blue line is 
for the “VrZ_DP_2.5E-9” experiment. 
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Fig. 4.34. The vertical vorticity (in unit of 10-5 s-1) at the vertical cross section through 
the center of the major storm at y=259.5km at 0250UTC 5 May 2007 for the experiments 
(a) “VrZ_NODP”, (b) “VrZ_DP_5.0E-8”, (c) “VrZ_DP_1.0E-8”, (d) “VrZ_DP_5.0E-9”, 
(e) “VrZ_DP_2.5E-9”. 
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4.5.4 Conclusion 

The updated ARPS 3DVAR system that includes the diagnostic pressure equation as 

a weak constraint is further applied to the 5 May 2007 Greensburg tornadic supercell 

storm case under two different data assimilation configurations.  

For the experiments assimilating wind data alone, the use of the diagnostic pressure 

equation constraint can evidently speed up the spin-up of rainfall during the intermittent 

data assimilation process and hence improve the following forecast in terms of the 

general evolution of storm cells and the mesocyclone rotation associated with observed 

tornado. For the experiments assimilating both wind data and reflectivity data, the use of 

diagnostic pressure equation constraint mainly improves the prediction of the 

mesocyclone rotation.  

4.6 Summary and future work 

Storm-scale 3dvar is computationally efficient and operational feasible for utilizing 

full volume Doppler radar data to predict the thunderstorms. However, it is often 

challenged by its less optimum theoretically due to its use of static background error 

covariance and lack of balance between model variables. Some effort has been made to 

provide flow-dependent background error covariance (Liu and Xue 2006; Liu et al. 2007) 

using an anisotropic filter or time-evolving forecast error covariance using hybrid ETKF-

3DVAR technique (Hamill and Snyder 2000; Wang et al. 2008b, 2008a). Other efforts 

are made to couple the three components of wind fields using a weak constraint based on 

the mass continuity equation (Gao et al. 1999; Gao et al. 2001; Gao et al. 2004; Hu et al. 
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2006a; Hu et al. 2006b; Hu and Xue 2007). However, there is still no suitable link 

between the dynamic model variables and the thermodynamic model variables. 

To mitigate the above problem, this research proposes to incorporate into the 3DVAR 

cost function a weak constraint based on the diagnostic pressure equation, which is 

derived from the ARPS full model momentum equations. This method is originated from 

the thermodynamic retrieval technique pioneered by Gal-Chen (1978) and Hane and 

Scott (1978). In our research, the main goal of this weak constraint is to help improve 

dynamic consistency between model variables. 

This diagnostic pressure equation constraint is developed within the framework of the 

ARPS 3DVAR system. The updated ARPS 3DVAR system is then applied to one 

idealized and two real world tornadic supercell thunderstorms to illustrate the impact of 

this constraint.  

For the idealized case study, it is demonstrated the diagnostic pressure equation 

constraint helps improve the analysis of wind and pressure fields slightly in single 

analysis step. After several data assimilation cycles, the impact of the constraint is more 

prominent. The use of the constraint evidently improves the recovery of all model 

variables.  

For the 8 May 2003 Oklahoma City tornadic supercell thunderstorm case, the 

intensification and the dissipation process of the major storm are predicted in a better 

timing and location by the experiments that impose the diagnostic pressure equation 

constraint. The mesocyclone rotation is also predicted much stronger and deeper by the 

use of the constraint in the 3DVAR cost function.  
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For the 5 May 2007 Greensburg tornadic supercell thunderstorm case, the use of the 

diagnostic pressure equation constraint evidently improves the quality of data 

assimilation and the following forecast when assimilating wind data alone. When 

assimilating both the wind data and reflectivity data, the improvement from the use of the 

constraint lies mainly in the forecast of the mesocyclone rotation.  

The sensitivity test of weighting coefficients show that the diagnostic pressure 

equation constraint is not very sensitive to the choice of weighting coefficient. However, 

the small values of the weighting coefficient should be used very cautiously.  

Overall, it can be concluded that the diagnostic pressure equation constraint has 

positive impact on storm-scale 3D variational data assimilation and the subsequent 

forecast. In the future, more case studies on tornadic supercell storms and other storm-

scale phenomena will be needed to generalize the conclusions in this research. 
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Chapter 5 Summary and future plan 

5.1 Summary 

Unlike relative mature large-scale 3DVAR data assimilation practice, storm-scale 

3DVAR still faces many challenges (Droegemeier 1997; Sun 2005b) and calls for more 

research effort in this area. We are trying to address some fundamental issues in this 

dissertation: the role of different data fields in storm-scale 3DVAR data assimilation; the 

impact of imperfect radar radial velocity forward operator; a weak constraint to help 

improve dynamic balance among model variables. 

Chapter 2 reports the work on the impact of different model variables on storm-scale 

data assimilation and NWP. OSS Experiments are conducted under a simplified 3DVAR 

framework. The model’s first responses at storm scale to the assimilation of different 

types of observations are thoroughly examined. It is also demonstrated that the horizontal 

wind fields have the greatest impact on the storm-scale data assimilation. This has a good 

practical implication since the radar can observe storm-scale wind field (in radial 

direction) and multiple radar data assimilation can provide relatively accurate horizontal 

wind information. With the knowledge of accurate horizontal wind fields, extra 

observations from other model variables will help further improve the quality of data 

assimilation. Among these “other model variables”, the perturbation water vapor field 

exerts the largest impact. To further examine the effect of wind fields in real world storm-

scale NWP, a real case study is also carried out. It is shown that assimilating wind fields 

observed by six radars, using legacy ARPS 3DVAR system, can successfully predict the 
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general evolution of a tornadic supercell storm. This confirms the important role of wind 

fields. 

Chapter 3 reports the work on the impact of imperfect radar radial velocity operator, 

which neglects the factors of beam broadening or earth curvature, on the storm-scale 

3DVAR data assimilation. It is shown that the effect of beam broadening can be 

generally overlooked in storm-scale radar data assimilation without noticeable 

degradation of assimilation results. However, the effect of earth curvature can only be 

neglected when the radar is near the storm (within 60 km as demonstrated by this study). 

The impact of refractive index gradient is also tested and shown to be small. 

Chapter 4 reports the development of a diagnostic pressure equation constraint for 

storm-scale 3DVAR data assimilation and its applications to tornadic supercell 

thunderstorm cases. This constraint is based on the storm-scale diagnostic pressure 

equation, which is derived from full ARPS model momentum equations. It serves to help 

build suitable balance among model variables. The impact of the constraint has been 

examined by applying it to case studies of one idealized tornadic supercell thunderstorm 

and two real-world tornadic supercell thunderstorms. It is demonstrated in the idealized 

case study that at single analysis step, the use of the constraint can help slightly improve 

the analysis of wind fields and pressure field; after a given period of intermittent data 

assimilation, the use of the constraint can evidently improve the quality of the data 

assimilation results. For the 8 May 2003 OKC tornadic supercell thunderstorm case, it is 

shown that the use of the constraint help improve the forecast in term of the general 

evolution and the mesocyclone rotation of the major tornadic supercell thunderstorm. For 

the 5 May 2007 Greensburg tornadic supercell thunderstorm case, two different 
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assimilation configurations are introduced to examine the impact of the constraint under 

different situations. It is shown that assimilating the wind data alone produces reasonable 

forecast and the use of the diagnostic pressure equation constraint evidently improve the 

forecast. When assimilating both wind data and reflectivity data, the impact of the 

constraint is also positive and mainly on the improvement of the prediction of the 

mesocyclone rotation. Overall, it is demonstrated that the diagnostic pressure equation 

constraint can improve the quality of radar data assimilation and the subsequent forecast. 

5.2 Future plan 

More case studies will be conducted in the future, beyond this Ph.D. program, to 

generalize the results in our research, including the dominant role of wind fields in storm-

scale NWP, the positive impact of the diagnostic pressure equation constraint. The 

parallel implement of the updated ARPS 3DVAR, which includes the diagnostic pressure 

equation constraint, is also planned for future operational testing.  

The assimilation of radar reflectivity data is not under a variational framework in this 

study. A kind of semi-empirical cloud analysis scheme originated from Local Analysis 

and prediction System (LAPS, Albers et al. 1996) is now commonly used for storm-scale 

research and operation (Ducrocq et al. 2000; Brewster 2002; Ducrocq et al. 2002; Souto 

et al. 2003; Hu et al. 2006a). To include the reflectivity data in the 3DVAR cost function 

using a relative complex radar forward operator other than warm rain version, which is 

adopted by some previous research (Sun and Crook 1997, 1998; Xiao et al. 2005), is still 

an unresolved problem. Therefore, further studies on how to best use reflectivity data are 

still required.  
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The current WSR-88D radar network is being upgraded with dual-polarization 

characteristics. This will improve the estimation of hydrometeor fields. Jung et al. (2008) 

have demonstrated the positive impact of polarimetric radar data in storm analysis 

through OSS experiments. Li and Mecikalski (2010) demonstrated that the dual-

polarization information can improve the short term forecast of moist convections when 

assimilated by regional-scale WRF-3DVAR with a warm-rain radar forward operator. 

Inspired by these results, assimilating dual-pol radar data into storm-scale NWP model 

through a 3DVAR procedure or a cloud analysis system is very worth further 

investigation in the future. 
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