98 research outputs found
A highly sensitive and specific system for large-scale gene expression profiling
<p>Abstract</p> <p>Background</p> <p>Rapid progress in the field of gene expression-based molecular network integration has generated strong demand on enhancing the sensitivity and data accuracy of experimental systems. To meet the need, a high-throughput gene profiling system of high specificity and sensitivity has been developed.</p> <p>Results</p> <p>By using specially designed primers, the new system amplifies sequences in neighboring exons separated by big introns so that mRNA sequences may be effectively discriminated from other highly related sequences including their genes, unprocessed transcripts, pseudogenes and pseudogene transcripts. Probes used for microarray detection consist of sequences in the two neighboring exons amplified by the primers. In conjunction with a newly developed high-throughput multiplex amplification system and highly simplified experimental procedures, the system can be used to analyze >1,000 mRNA species in a single assay. It may also be used for gene expression profiling of very few (<it>n </it>= 100) or single cells. Highly reproducible results were obtained from duplicate samples with the same number of cells, and from those with a small number (100) and a large number (10,000) of cells. The specificity of the system was demonstrated by comparing results from a breast cancer cell line, MCF-7, and an ovarian cancer cell line, NCI/ADR-RES, and by using genomic DNA as starting material.</p> <p>Conclusion</p> <p>Our approach may greatly facilitate the analysis of combinatorial expression of known genes in many important applications, especially when the amount of RNA is limited.</p
Proizvodnja arahidonske kiseline iz Mortierella alpina I49 i N18
Arachidonic acid (AA), an essential fatty acid in human body, fermented by Mortierella alpina I49-N18 was investigated in a shake-flask, and a 50-ton fermentor. In order to optimize the culture conditions, the effects of temperature, initial pH, culture time, carbon and nitrogen sources were studied. Furthermore, the way of adding sugar during fermentation was evaluated in a 50-ton fermentor. Under the optimum culture conditions, arachidonic acid produced in shake-flask and 50-ton fermentor was 4.55 and 5.11 g/L media, respectively. It was shown that the highest percentage of AA in lipids in shake-flask and 50-ton fermentor reached 70.20 and 53.01 %, respectively. Gas chromatography/mass spectrometry tests showed that the oil contained 80 % of polyunsaturated fatty acids such as arachidonic acid, γ-linolenic acid, and linoleic acid.Istraživana je fermentacija Mortierella alpina I49 i N18 u tikvicama na tresilici i u 50-tonskom fermentoru za dobivanje arahidonske kiseline, esencijalne masne kiseline u čovjeka. Da bi se postigli najpovoljniji uvjeti uzgoja, ispitan je utjecaj temperature, početnog pH, trajanje uzgoja, izvori ugljika i dušika. Nadalje, ispitan je način dodavanja šećera tijekom uzgoja u 50-tonskom fermentoru. Pod optimalnim uvjetima uzgoja na tresilici i u 50-tonskom fermentoru dobiveno je 4,55 odnosno 5,11 g arahidonske kiseline/L podloge. Najveći je postotak arahidonske kiseline u lipidima na tresilici i u 50-tonskom fermentoru iznosio 70,20 odnosno 53,01 %. Plinskom kromatografijom/masenom spektrometrijom utvrđeno je da ulje sadrži 80 % polinezasićenih kiselina kao što su arahidonska, γ-linolenska i linoleinska kiselina
Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm
Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques.Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype.This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis
I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences
The I4U consortium was established to facilitate a joint entry to NIST
speaker recognition evaluations (SRE). The latest edition of such joint
submission was in SRE 2018, in which the I4U submission was among the
best-performing systems. SRE'18 also marks the 10-year anniversary of I4U
consortium into NIST SRE series of evaluation. The primary objective of the
current paper is to summarize the results and lessons learned based on the
twelve sub-systems and their fusion submitted to SRE'18. It is also our
intention to present a shared view on the advancements, progresses, and major
paradigm shifts that we have witnessed as an SRE participant in the past decade
from SRE'08 to SRE'18. In this regard, we have seen, among others, a paradigm
shift from supervector representation to deep speaker embedding, and a switch
of research challenge from channel compensation to domain adaptation.Comment: 5 page
AccuTyping: new algorithms for automated analysis of data from high-throughput genotyping with oligonucleotide microarrays
Microarray-based analysis of single nucleotide polymorphisms (SNPs) has many applications in large-scale genetic studies. To minimize the influence of experimental variation, microarray data usually need to be processed in different aspects including background subtraction, normalization and low-signal filtering before genotype determination. Although many algorithms are sophisticated for these purposes, biases are still present. In the present paper, new algorithms for SNP microarray data analysis and the software, AccuTyping, developed based on these algorithms are described. The algorithms take advantage of a large number of SNPs included in each assay, and the fact that the top and bottom 20% of SNPs can be safely treated as homozygous after sorting based on their ratios between the signal intensities. These SNPs are then used as controls for color channel normalization and background subtraction. Genotype calls are made based on the logarithms of signal intensity ratios using two cutoff values, which were determined after training the program with a dataset of ∼160 000 genotypes and validated by non-microarray methods. AccuTyping was used to determine >300 000 genotypes of DNA and sperm samples. The accuracy was shown to be >99%. AccuTyping can be downloaded from
I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences
The I4U consortium was established to facilitate a joint entry to NIST speaker recognition evaluations (SRE). The latest edition of such joint submission was in SRE 2018, in which the I4U submission was among the best-performing systems. SRE'18 also marks the 10-year anniversary of I4U consortium into NIST SRE series of evaluation. The primary objective of the current paper is to summarize the results and lessons learned based on the twelve subsystems and their fusion submitted to SRE'18. It is also our intention to present a shared view on the advancements, progresses, and major paradigm shifts that we have witnessed as an SRE participant in the past decade from SRE'08 to SRE'18. In this regard, we have seen, among others , a paradigm shift from supervector representation to deep speaker embedding, and a switch of research challenge from channel compensation to domain adaptation
Genomic and Proteomic Analyses of the Fungus Arthrobotrys oligospora Provide Insights into Nematode-Trap Formation
Nematode-trapping fungi are “carnivorous” and attack their hosts using specialized trapping devices. The morphological development of these traps is the key indicator of their switch from saprophytic to predacious lifestyles. Here, the genome of the nematode-trapping fungus Arthrobotrys oligospora Fres. (ATCC24927) was reported. The genome contains 40.07 Mb assembled sequence with 11,479 predicted genes. Comparative analysis showed that A. oligospora shared many more genes with pathogenic fungi than with non-pathogenic fungi. Specifically, compared to several sequenced ascomycete fungi, the A. oligospora genome has a larger number of pathogenicity-related genes in the subtilisin, cellulase, cellobiohydrolase, and pectinesterase gene families. Searching against the pathogen-host interaction gene database identified 398 homologous genes involved in pathogenicity in other fungi. The analysis of repetitive sequences provided evidence for repeat-induced point mutations in A. oligospora. Proteomic and quantitative PCR (qPCR) analyses revealed that 90 genes were significantly up-regulated at the early stage of trap-formation by nematode extracts and most of these genes were involved in translation, amino acid metabolism, carbohydrate metabolism, cell wall and membrane biogenesis. Based on the combined genomic, proteomic and qPCR data, a model for the formation of nematode trapping device in this fungus was proposed. In this model, multiple fungal signal transduction pathways are activated by its nematode prey to further regulate downstream genes associated with diverse cellular processes such as energy metabolism, biosynthesis of the cell wall and adhesive proteins, cell division, glycerol accumulation and peroxisome biogenesis. This study will facilitate the identification of pathogenicity-related genes and provide a broad foundation for understanding the molecular and evolutionary mechanisms underlying fungi-nematodes interactions
I4U Submission to NIST SRE 2018: Leveraging from a Decade of Shared Experiences
International audienceThe I4U consortium was established to facilitate a joint entry to NIST speaker recognition evaluations (SRE). The latest edition of such joint submission was in SRE 2018, in which the I4U submission was among the best-performing systems. SRE'18 also marks the 10-year anniversary of I4U consortium into NIST SRE series of evaluation. The primary objective of the current paper is to summarize the results and lessons learned based on the twelve subsystems and their fusion submitted to SRE'18. It is also our intention to present a shared view on the advancements, progresses, and major paradigm shifts that we have witnessed as an SRE participant in the past decade from SRE'08 to SRE'18. In this regard, we have seen, among others , a paradigm shift from supervector representation to deep speaker embedding, and a switch of research challenge from channel compensation to domain adaptation
- …