8 research outputs found

    Leaf Trait Variation with Environmental Factors at Different Spatial Scales: A Multilevel Analysis Across a Forest-Steppe Transition

    No full text
    In mountain areas, the distribution of plant communities is affected by both regional and microhabitat conditions. The degree to which these different spatial factors contribute to plant communities is not well understood, because few studies have used a uniform sampling methodology to measure trait variation across the range of ecological scales. In this study, a stratified sampling method was used to study community weighted leaf traits and environment factors at different spatial (transect and plot) scales. We measured 6 leaf traits (specific leaf area, leaf tissue density, leaf thickness, leaf carbon, nitrogen and phosphorus content) in 258 communities from 57 sites in 9 transects nested within 3 vegetation zones. These communities are located in the loess hilly and gully area of the Yanhe river watershed. We coupled climatic factors at the transect scale with topographic and edaphic factors at the plot scale using multilevel regression modeling to analyze the trait variation associated with spatial scales. At the transect scale, the mean annual rainfall showed a highly significant positive effect on the leaf nitrogen concentration (LNC) (p < 0.01), while it had a highly significant negative effect on leaf thickness (LT) and leaf tissue density (LTD) (p < 0.001) and a significant negative effect on leaf carbon concentration (LCC) (p < 0.05), explaining 10.91%, 36.08%, 57.25% and 66.01% of LTD, LT, LCC and LNC variation at transect scale respectively. At a plot scale, the slope aspect showed a highly significant positive effect on specific leaf area (SLA) and LNC but a highly significant negative effect on LT and LTD. The soil water content had a significant negative effect on LT (p < 0.05) and LTD (p < 0.001) while soil organic matter showed a positive effect on SLA (p < 0.001) and LNC (p < 0.01). Totally, plot scale variables explained 7.28%, 43.60%, 46.43%, 75.39% and 81.17% of LCC, LT, LNC, LTD and SLA variation. The elevation showed positive effect only on LCC (p < 0.05). The results confirmed the existence of consistent trait–environment relationships at both transect and plot scales. These trait–environment relationships at different spatial scales will provide mechanistic understanding on the vegetation community assembly in the study area. Practically, ignoring trait variation within transects will underestimate roles of microhabitat filters in community assembly, and leads to the homogenization of restoration species. This will be like the past restoration plans and programs, causing serious environmental problems such as dwarf trees and soil desiccation

    Joint Control of Net Primary Productivity by Climate and Soil Nitrogen in the Forests of Eastern China

    No full text
    The nature and extent of climate and soil nutrient controls in Chinese forests remain poorly resolved. Here, we synthesized the data on carbon–climate–soil in eastern China, and litter N was firstly taken into consideration, to examine the variation of net primary productivity (NPP) and its driving forces. Results showed that NPP had significant latitude pattern and varied substantially across climate zones. Bivariate analyses indicated that mean annual temperature (MAT), mean annual precipitation (MAP), soil N content (Nsoil), and annual litter N (Nre) were the main controlling factors in spatial pattern of forest NPP. Notably, partial general linear model analysis revealed that MAT, MAP, and Nre jointly explained 84.8% of the spatial variation of NPP. Among the three major factors, Nre explained more variation of forest NPP than the other two factors, and MAT and MAP affected NPP mainly through the change of litter N rather than via themselves, highlighting the importance of litter N in estimating forest NPP. However, to accurately describe the pattern of forest NPP in China, more detailed field measurements and methodologies on NPP and relevant confounding factors should be addressed in future studies

    Digital close range photogrammetry for the study of rill development at flume scale

    No full text
    Soil erosion is a continuous process of detachment, transportation, and deposition of soil particles. Obtaining accurate descriptions of soil surface topography is crucial for quantifying changes to the soil surface during erosion processes. The objective of this studywas to develop an improved close-range photogrammetric technique to assess soil erosion under rainfall conditions. Based on high overlapping image acquisition, digital point cloud matching, digital elevation model (DEM) generation and soil erosion calculation, a digital close-range photogrammetric observation system was explored and established. The results showed that the established digital photogrammetric observation systemcould accurately calculate the digital point cloud from the underlying surface with a 2 min time interval and a 1.5 mm spatial resolution. In addition, based on the DEM generated from digital point clouds, the amount of soil erosion in different topographic positions within various time periods was calculated. The digital photogrammetric observation methods explored in our study provide a reliable way to monitor soil erosion processes, especially under rainfall conditions. This approach can accurately resolve the evolution of the underlying surface soil erosion, which is of great importance in understanding soil erosion mechanisms.</div

    Leaf Trait Variation with Environmental Factors at Different Spatial Scales: A Multilevel Analysis Across a Forest-Steppe Transition

    No full text
    In mountain areas, the distribution of plant communities is affected by both regional and microhabitat conditions. The degree to which these different spatial factors contribute to plant communities is not well understood, because few studies have used a uniform sampling methodology to measure trait variation across the range of ecological scales. In this study, a stratified sampling method was used to study community weighted leaf traits and environment factors at different spatial (transect and plot) scales. We measured 6 leaf traits (specific leaf area, leaf tissue density, leaf thickness, leaf carbon, nitrogen and phosphorus content) in 258 communities from 57 sites in 9 transects nested within 3 vegetation zones. These communities are located in the loess hilly and gully area of the Yanhe river watershed. We coupled climatic factors at the transect scale with topographic and edaphic factors at the plot scale using multilevel regression modeling to analyze the trait variation associated with spatial scales. At the transect scale, the mean annual rainfall showed a highly significant positive effect on the leaf nitrogen concentration (LNC) (p < 0.01), while it had a highly significant negative effect on leaf thickness (LT) and leaf tissue density (LTD) (p < 0.001) and a significant negative effect on leaf carbon concentration (LCC) (p < 0.05), explaining 10.91%, 36.08%, 57.25% and 66.01% of LTD, LT, LCC and LNC variation at transect scale respectively. At a plot scale, the slope aspect showed a highly significant positive effect on specific leaf area (SLA) and LNC but a highly significant negative effect on LT and LTD. The soil water content had a significant negative effect on LT (p < 0.05) and LTD (p < 0.001) while soil organic matter showed a positive effect on SLA (p < 0.001) and LNC (p < 0.01). Totally, plot scale variables explained 7.28%, 43.60%, 46.43%, 75.39% and 81.17% of LCC, LT, LNC, LTD and SLA variation. The elevation showed positive effect only on LCC (p < 0.05). The results confirmed the existence of consistent trait-environment relationships at both transect and plot scales. These trait-environment relationships at different spatial scales will provide mechanistic understanding on the vegetation community assembly in the study area. Practically, ignoring trait variation within transects will underestimate roles of microhabitat filters in community assembly, and leads to the homogenization of restoration species. This will be like the past restoration plans and programs, causing serious environmental problems such as dwarf trees and soil desiccation

    Joint Control of Net Primary Productivity by Climate and Soil Nitrogen in the Forests of Eastern China

    No full text
    The nature and extent of climate and soil nutrient controls in Chinese forests remain poorly resolved. Here, we synthesized the data on carbon-climate-soil in eastern China, and litter N was firstly taken into consideration, to examine the variation of net primary productivity (NPP) and its driving forces. Results showed that NPP had significant latitude pattern and varied substantially across climate zones. Bivariate analyses indicated that mean annual temperature (MAT), mean annual precipitation (MAP), soil N content (N-soil), and annual litter N (N-re) were the main controlling factors in spatial pattern of forest NPP. Notably, partial general linear model analysis revealed that MAT, MAP, and N-re jointly explained 84.8% of the spatial variation of NPP. Among the three major factors, N-re explained more variation of forest NPP than the other two factors, and MAT and MAP affected NPP mainly through the change of litter N rather than via themselves, highlighting the importance of litter N in estimating forest NPP. However, to accurately describe the pattern of forest NPP in China, more detailed field measurements and methodologies on NPP and relevant confounding factors should be addressed in future studies
    corecore