7 research outputs found

    Toxicity mechanisms of nanoparticles in the male reproductive system

    Get PDF
    The field of nanotechnology has allowed for increasing nanoparticle (NP) exposure to the male reproductive system. Certain NPs have been reported to have adverse consequences on male germ and somatic cells. Germ cells are the bridge between generations and are responsible for the transmission of genetic and epigenetic information to future generations. A number of NPs have negative impacts on male germ and somatic cells which could ultimately affect fertility or the ability to produce healthy offspring. These impacts are related to NP composition, modification, concentration, agglomeration, and route of administration. NPs can induce severe toxic effects on the male reproduction system after passing through the blood–testis barrier and ultimately damaging the spermatozoa. Therefore, understanding the impacts of NPs on reproduction is necessary. This review will provide a comprehensive overview on the current state of knowledge derived from the previous in vivo and in vitro research on effects of NPs on the male reproductive system at the genetic, cellular, and molecular levels.No sponso

    Implication of a de novo Variant in ciliary rootlet coiledcoil (CROCC) with assimilation of atlas (AOA)

    Get PDF
    Assimilation of atlas is a rare skeletal malformation causing nerve compression with high risk of fatal. However, the genetic etiology of assimilation of atlas AOA is currently lacking. In this paper, the whole-exome sequencing (WES) analysis was employed to study a Chinese family having a sporadic proband son of assimilation of atlas AOA but other healthy family members. We identified a novel variant in ciliary rootlet coiled-coil gene (NM_014675.5 (CROCC): c.4702C>T (r.4702c>u, p.(Arg1568Cys)). The variant had different genotypes between the proband and healthy family members but with high conservations of “damage” to protein structure based on MutationTaster and SIFT prediction. CROCC gene can be obtained in both healthy (n=220) and non-mutated assimilation of atlas AOA patient samples (n=68) but absented in five sporadic patients with the novel variant. Furthermore, abnormal of cilia was observed after editing the target sequence on CROCC using CRISPR-Cas9. These results suggested that assimilation of atlas AOA might be caused by the mutation of CROCC: c.4702C>T (r.4702c>u, p.(Arg1568Cys)). With strong amino acid conservation and interaction regulation, the variant mutation could cause the signal disorder of skeletal development which may lead to the defective bone formation and finally cause the development of assimilation of atlas AOA

    A de novo Variant in CROCC identified in a Chinese family implies the potential association with Atlanto-occipital Fusion (AOF)

    Get PDF
    Poster presentation for the Physoc 2021 annual conference. Atlanto-occipital fusion (AOF) is a rare skeletal malformation causing nerve compression with high risk of fatal. Its genetic information is currently lacking. Through whole-exome sequencing (WES) on a Chinese family having a sporadic proband son of AOF but other healthy family members, we identified a novel variant (chr1: c.4702C>T: p.R1568C) in ciliary rootlet coiled-coil (CROCC). The variant had different genotypes between the proband and healthy family members but with high conservations of “damage” to protein structure based on MutationTaster and SIFT forecast. CROCC gene can be obtained in both healthy (n=220) and non-mutated AOF patient samples (n=68) but absented in five sporadic patients with the novel variant. Furthermore, abnormal of cilia was observed after editing the target sequence on CROCC using CRISPR-Cas9. These results suggested that AOF might be caused by the mutation of the variant c.4702C>T:p.R1568C in CROCC. With strong amino acid conservation and interaction regulation, the variant mutation could cause the signal disorder of skeletal development which may lead to the defective bone formation and finally cause the development of AOF

    Exosome and Exosomal MicroRNA: Trafficking, Sorting, and Function

    Get PDF
    Exosomes are 40–100 nm nano-sized vesicles that are released from many cell types into the extracellular space. Such vesicles are widely distributed in various body fluids. Recently, mRNAs and microRNAs (miRNAs) have been identified in exosomes, which can be taken up by neighboring or distant cells and subsequently modulate recipient cells. This suggests an active sorting mechanism of exosomal miRNAs, since the miRNA profiles of exosomes may differ from those of the parent cells. Exosomal miRNAs play an important role in disease progression, and can stimulate angiogenesis and facilitate metastasis in cancers. In this review, we will introduce the origin and the trafficking of exosomes between cells, display current research on the sorting mechanism of exosomal miRNAs, and briefly describe how exosomes and their miRNAs function in recipient cells. Finally, we will discuss the potential applications of these miRNA-containing vesicles in clinical settings

    Synaptotagmin-7 is a key factor for bipolar-like behavioral abnormalities in mice

    No full text
    The pathogenesis of bipolar disorder (BD) has remained enigmatic, largely because genetic animal models based on identified susceptible genes have often failed to show core symptoms of spontaneous mood cycling. However, pedigree and induced pluripotent stem cell (iPSC)-based analyses have implicated that dysfunction in some key signaling cascades might be crucial for the disease pathogenesis in a subpopulation of BD patients. We hypothesized that the behavioral abnormalities of patients and the comorbid metabolic abnormalities might share some identical molecular mechanism. Hence, we investigated the expression of insulin/synapse dually functioning genes in neurons derived from the iPSCs of BD patients and the behavioral phenotype of mice with these genes silenced in the hippocampus. By these means, we identified synaptotagmin-7 (Syt7) as a candidate risk factor for behavioral abnormalities. We then investigated Syt7 knockout (KO) mice and observed nocturnal manic-like and diurnal depressive-like behavioral fluctuations in a majority of these animals, analogous to the mood cycling symptoms of BD. We treated the Syt7 KO mice with clinical BD drugs including olanzapine and lithium, and found that the drug treatments could efficiently regulate the behavioral abnormalities of the Syt7 KO mice. To further verify whether Syt7 deficits existed in BD patients, we investigated the plasma samples of 20 BD patients and found that the Syt7 mRNA level was significantly attenuated in the patient plasma compared to the healthy controls. We therefore concluded that Syt7 is likely a key factor for the bipolar-like behavioral abnormalities.</p
    corecore