66 research outputs found

    Prevotella intermedia and Prevotella nigrescens serotypes, ribotypes and binding characteristics

    Get PDF
    type strains and 62 clinical isolates of Prevotella intermedia and Prevotella nigrescens were typed with the use of genomic DNA fingerprints and rRNA gene probes. The strains were further serotyped with monoclonal antibodies and characterized with SDS-PAGE, enzymatic activities, hemolysis and hemagglutination and coaggregation with Streptococcus and Actinomyces spp. P. intermedia and P. nigrescens were found to have distinct ribotype patterns which correspond to previously defined serotypes I and II/III, respectively. No clear phenotypic difference related to hemolysis, hemagglutination and coaggregation with Streptococcus and Actinomyces species, or expression of aminopeptides and lipase was found between P. intermedia and P. nigrescen

    Caries in the infundibulum of the second upper premolar tooth in the horse

    Get PDF
    BACKGROUND: Swedish equine dental practices have empirically found that the prevalence of infundibular caries as a primary disorder in the first permanent premolar teeth (P2) of the horse upper jaw has increased during the last 10 years. A previously unknown bacterial species, Streptococcus devriesei (CCUG 47155(T)), which is related to Streptococcus mutans, has recently been isolated from these carious lesions. To understand the aetiology of caries in horses, it is essential to elucidate the relationship between S. devriesei and P2 infundibular caries. METHODS: The anterior infundibulum of maxillary P2, or the occlusal surface at the site of the infundibulum, in 117 horses and ponies, 77 with and 40 without caries in this tooth, was sampled for bacteriological analyses between 1990 and 2004. Samples were transported in VMGA III medium and then inoculated onto MSB agar. The approximate number of bacteria was counted in each sample and the isolates were characterised biochemically, using a commercial kit. RESULTS: All 50 samples taken from carious lesions after 2002 were positive for an S. mutans-like strain, i.e. S. devriesei. The bacteria were also found in four of the control animals, but were much less numerous than in samples from caries-affected horses. None of the swabs taken prior to 2002 were positive for this bacteria. CONCLUSION: Our results demonstrate that S. devriesei can colonise the infundibulum of P2 of the horse upper jaw, which can be fatal for the dental tissue. We conclude that S. devriesei is strongly associated with P2 caries in horses

    Detection of Periodontal Markers in Chronic Periodontitis

    Get PDF
    The aim was to compare the detection frequency of periodontopathogens by using the Pado Test 4.5 and checkerboard DNA-DNA hybridization technique in chronic periodontitis patients

    Site-specific O-glycosylation on the MUC_{2} mucin protein inhibits cleavage by the porphyromonas gingivalis secreted cysteine protease (RgpB)

    Get PDF
    The colonic epithelial surface is protected by an inner mucus layer that the commensal microflora cannot penetrate. We previously demonstrated that Entamoeba histolytica secretes a protease capable of dissolving this layer that is required for parasite penetration. Here, we asked whether there are bacteria that can secrete similar proteases. We screened bacterial culture supernatants for such activity using recombinant fragments of the MUC2 mucin, the major structural component, and the only gel-forming mucin in the colonic mucus. MUC2 has two central heavily O-glycosylated mucin domains that are protease-resistant and has cysteine-rich N and C termini responsible for polymerization. Culture supernatants of Porphyromonas gingivalis, a bacterium that secretes proteases responsible for periodontitis, cleaved the MUC2 C-terminal region, whereas the N-terminal region was unaffected. The active enzyme was isolated and identified as Arg-gingipain B (RgpB). Two cleavage sites were localized to IR↓TT and NR↓QA. IR↓TT cleavage will disrupt the MUC2 polymers. Because this site has two potential O-glycosylation sites, we tested whether recombinant GalNAc-transferases (GalNAc-Ts) could glycosylate a synthetic peptide covering the IRTT sequence. Only GalNAc-T3 was able to glycosylate the second Thr in IRTT, rendering the sequence resistant to cleavage by RgpB. Furthermore, when GalNAc-T3 was expressed in CHO cells expressing the MUC2 C terminus, the second threonine was glycosylated, and the protein became resistant to RgpB cleavage. These findings suggest that bacteria can produce proteases capable of dissolving the inner protective mucus layer by specific cleavages in the MUC2 mucin and that this cleavage can be modulated by site-specific O-glycosylation

    The oral microbiome in human immunodeficiency virus (HIV)-positive individuals

    Get PDF
    This study was supported by the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission (HR1155A). This research utilized Queen Mary’s MidPlus computational facilities, supported by QMUL Research-IT and funded by EPSRC grant EP/K000128/1

    Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections

    Get PDF
    This study evaluates the presence of virulence factors and antibiotic susceptibility among enterococcal isolates from oral mucosal and deep infections. Forty-three enterococcal strains from oral mucosal lesions and 18 from deep infections were isolated from 830 samples that were sent during 2 years to Oral Microbiology, University of Gothenburg, for analysis. The 61 strains were identified by 16S rDNA, and characterized by the presence of the virulence genes efa A (endocarditis gene), gel E (gelatinase gene), ace (collagen binding antigen gene), asa (aggregation substance gene), cyl A (cytolysin activator gene) and esp (surface adhesin gene), tested for the production of bacteriocins and presence of plasmids. MIC determination was performed using the E-test method against the most commonly used antibiotics in dentistry, for example, penicillin V, amoxicillin and clindamycin. Vancomycin was included in order to detect vancomycin-resistant enterococci (VRE) strains. Sixty strains were identified as Enterococcus faecalis and one as Enterococcus faecium. All the virulence genes were detected in more than 93.3% (efa A and esp) of the E. faecalis strains, while the presence of phenotypic characteristics was much lower (gelatinase 10% and hemolysin 16.7%). Forty-six strains produced bacteriocins and one to six plasmids were detected in half of the isolates. Enterococcal strains from oral infections had a high virulence capacity, showed bacteriocin production and had numerous plasmids. They were generally susceptible to ampicillins but were resistant to clindamycin, commonly used in dentistry, and no VRE-strain was found

    Back to the future:re-establishing guinea pig in vivo asthma models

    Get PDF
    Research using animal models of asthma is currently dominated by mouse models. This has been driven by the comprehensive knowledge on inflammatory and immune reactions in mice, as well as tools to produce genetically modified mice. Many of the identified therapeutic targets influencing airway hyper-responsiveness and inflammation in mouse models, have however been disappointing when tested clinically in asthma. It is therefore a great need for new animal models that more closely resemble human asthma. The guinea pig has for decades been used in asthma research and a comprehensive table of different protocols for asthma models is presented. The studies have primarily been focused on the pharmacological aspects of the disease, where the guinea pig undoubtedly is superior to mice. Further reasons are the anatomical and physiological similarities between human and guinea pig airways compared with that of the mouse, especially with respect to airway branching, neurophysiology, pulmonary circulation and smooth muscle distribution, as well as mast cell localization and mediator secretion. Lack of reagents and specific molecular tools to study inflammatory and immunological reactions in the guinea pig has however greatly diminished its use in asthma research. The aim in this position paper is to review and summarize what we know about different aspects of the use of guinea pig in vivo models for asthma research. The associated aim is to highlight the unmet needs that have to be addressed in the future
    corecore