3,717 research outputs found

    A photometricity and extinction monitor at the Apache Point Observatory

    Full text link
    An unsupervised software ``robot'' that automatically and robustly reduces and analyzes CCD observations of photometric standard stars is described. The robot measures extinction coefficients and other photometric parameters in real time and, more carefully, on the next day. It also reduces and analyzes data from an all-sky 10ÎĽm10 \mu m camera to detect clouds; photometric data taken during cloudy periods are automatically rejected. The robot reports its findings back to observers and data analysts via the World-Wide Web. It can be used to assess photometricity, and to build data on site conditions. The robot's automated and uniform site monitoring represents a minimum standard for any observing site with queue scheduling, a public data archive, or likely participation in any future National Virtual Observatory.Comment: accepted for publication in A

    New Results for Diffusion in Lorentz Lattice Gas Cellular Automata

    Full text link
    New calculations to over ten million time steps have revealed a more complex diffusive behavior than previously reported, of a point particle on a square and triangular lattice randomly occupied by mirror or rotator scatterers. For the square lattice fully occupied by mirrors where extended closed particle orbits occur, anomalous diffusion was still found. However, for a not fully occupied lattice the super diffusion, first noticed by Owczarek and Prellberg for a particular concentration, obtains for all concentrations. For the square lattice occupied by rotators and the triangular lattice occupied by mirrors or rotators, an absence of diffusion (trapping) was found for all concentrations, except on critical lines, where anomalous diffusion (extended closed orbits) occurs and hyperscaling holds for all closed orbits with {\em universal} exponents df=74{\displaystyle{d_f = \frac{7}{4}}} and Ď„=157{\displaystyle{\tau = \frac{15}{7}}}. Only one point on these critical lines can be related to a corresponding percolation problem. The questions arise therefore whether the other critical points can be mapped onto a new percolation-like problem, and of the dynamical significance of hyperscaling.Comment: 52 pages, including 18 figures on the last 22 pages, email: [email protected]

    Investigating Ca II emission in the RS CVn binary ER Vulpeculae using the Broadening Function Formalism

    Full text link
    The synchronously rotating G stars in the detached, short-period (0.7 d), partially eclipsing binary, ER Vul, are the most chromospherically active solar-type stars known. We have monitored activity in the Ca II H & K reversals for almost an entire orbit. Rucinski's Broadening Function Formalism allows the photospheric contribution to be objectively subtracted from the highly blended spectra. The power of the BF technique is also demonstrated by the good agreement of radial velocities with those measured by others from less crowded spectral regions. In addition to strong Ca II emission from the primary and secondary, there appears to be a high-velocity stream flowing onto the secondary where it stimulates a large active region on the surface 30 - 40 degrees in advance of the sub-binary longitude. A model light curve with a spot centered on the same longitude also gives the best fit to the observed light curve. A flare with approximately 13% more power than at other phases was detected in one spectrum. We suggest ER Vul may offer a magnified view of the more subtle chromospheric effects synchronized to planetary revolution seen in certain `51 Peg'-type systems.Comment: Accepted to AJ; 17 pages and 16 figure

    Condensation of `composite bosons' in a rotating BEC

    Full text link
    We provide evidence for several novel phases in the dilute limit of rotating BECs. By exact calculation of wavefunctions and energies for small numbers of particles, we show that the states near integer angular momentum per particle are best considered condensates of composite entities, involving vortices and atoms. We are led to this result by explicit comparison with a description purely in terms of vortices. Several parallels with the fractional quantum Hall effect emerge, including the presence of the Pfaffian state.Comment: 4 pages, Latex, 3 figure

    Problems for MOND in Clusters and the Ly-alpha Forest

    Full text link
    The observed dynamics of gas and stars on galactic and larger scales cannot be accounted for by self-gravity, indicating that there are large quantities of unseen matter, or that gravity is non-Newtonian in these regimes. Milgrom's MOdified Newtonian Dynamics (MOND) postulates that Newton's laws are modified at very low acceleration, and can account for the rotation curves of galaxies and some other astrophysical observations, without dark matter. Here we apply MOND to two independent physical systems: Ly-alpha absorbers and galaxy clusters. While physically distinct, both are simple hydrodynamical systems with characteristic accelerations in the MOND regime. We find that Ly-alpha absorbers are somewhat smaller than in Newtonian gravity with dark matter, but the result depends crucially on the (unknown) background acceleration field in which they are embedded. In clusters MOND appears to explain the observed (baryonic) mass-temperature relation. However, given observed gas density and enclosed mass profiles and the assumption of hydrostatic equilibrium, MOND predicts radial temperature profiles which disagree badly with observations. We show this explicitly for the Virgo, Abell 2199 and Coma clusters, but the results are general, and seem very difficult to avoid. If this discrepancy is to be resolved by positing additional (presumably baryonic) dark matter, then this dark matter must have ~1-3 times the cluster gas mass within 1 Mpc. This result strongly disfavors MOND as an alternative to dark matter (Abridged).Comment: Revised version. Important caveat in Ly-alpha calculation discussed; conclusions weakened. Coma cluster and calculation of dark matter mass required by MOND added; cluster conclusions strengthened. 11 EmulateApJ pages with 3 embedded figures. Accepted by Ap

    Experiences of refugees and asylum seekers towards access and utilisation of sexual health services: A systematic review

    Get PDF
    A systematic review protocol for exploring the experiences and utilisation of sexually transmitted infections and HIV testing and treatments among refugees and asylum seekers in both overdeveloped and underdeveloped countries are the contexts of this review. Issues facing refugees and displaced people are some of the most complicated humanitarian concerns globally. The UN Refugee Agency, UK reports that at least 89.3 million people worldwide have been forced to flee their homes (UNHCR UK, 2021). Among them, nearly 27.1million are refugees and 4.6 million are asylum seekers (UNHCR, 2021). Evidence shows the access and utilisation of sexual health services among these populations are comparatively limited

    Formation of convective cells in the scrape-off layer of the CASTOR tokamak

    Get PDF
    Understanding of the scrape-off layer (SOL) physics in tokamaks requires diagnostics with sufficient temporal and spatial resolution. This contribution describes results of experiments performed in the SOL of the CASTOR tokamak (R=40 cm, a = 6 cm) by means of a ring of 124 Langmuir probes surrounding the whole poloidal cross section. The individual probes measure either the ion saturation current of the floating potential with the spatial resolution up to 3 mm. Experiments are performed in a particular magnetic configuration, characterized by a long parallel connection length in the SOL, L_par ~q2piR. We report on measurements in discharges, where the edge electric field is modified by inserting a biased electrode into the edge plasma. In particular, a complex picture is observed, if the biased electrode is located inside the SOL. The poloidal distribution of the floating potential appears to be strongly non-uniform at biasing. The peaks of potential are observed at particular poloidal angles. This is interpreted as formation of a biased flux tube, which emanates from the electrode along the magnetic field lines and snakes q times around the torus. The resulting electric field in the SOL is 2-dimensional, having the radial as well as the poloidal component. It is demonstrated that the poloidal electric field E_pol convects the edge plasma radially due to the E_pol x B_T drift either inward or outward depending on its sign. The convective particle flux is by two orders of magnitude larger than the fluctuation-induced one and consequently dominates.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004, Nice (France

    Asymmetric supernova in hierarchical multiple star systems and application to J1903+0327

    Full text link
    We develop a method to analyze the effect of an asymmetric supernova on hierarchical multiple star systems and we present analytical formulas to calculate orbital parameters for surviving binaries or hierarchical triples and runaway velocities for their dissociating equivalents. The effect of an asymmetric supernova on the orbital parameters of a binary system has been studied to great extent (e.g. Hills 1983; Kalogera 1996; Tauris & Takens 1998), but this effect on higher multiplicity hierarchical systems has not been explored before. With our method, the supernova effect can be computed by reducing the hierarchical multiple to an effective binary by means of recursively replacing the inner binary by an effective star at the center of mass of that binary. We apply our method to a hierarchical triple system similar to the progenitor of PSR J1903+0327 suggested by Portegies Zwart et al. (2011). We confirm their earlier finding that PSR J1903+0327 could have evolved from a hierarchical triple that became unstable and ejected the secondary star of the inner binary. Furthermore, if such as system did evolve via this mechanism the most probable configuration would be a small supernova kick velocity, an inner binary with a large semi-major axis, and the fraction of mass accreted onto the neutron star to the mass lost by the secondary would most likely be between 0.35 and 0.5Comment: 13 pages, 9 figures, accepted for publication in MNRA
    • …
    corecore