3,745 research outputs found
A photometricity and extinction monitor at the Apache Point Observatory
An unsupervised software ``robot'' that automatically and robustly reduces
and analyzes CCD observations of photometric standard stars is described. The
robot measures extinction coefficients and other photometric parameters in real
time and, more carefully, on the next day. It also reduces and analyzes data
from an all-sky camera to detect clouds; photometric data taken
during cloudy periods are automatically rejected. The robot reports its
findings back to observers and data analysts via the World-Wide Web. It can be
used to assess photometricity, and to build data on site conditions. The
robot's automated and uniform site monitoring represents a minimum standard for
any observing site with queue scheduling, a public data archive, or likely
participation in any future National Virtual Observatory.Comment: accepted for publication in A
New Results for Diffusion in Lorentz Lattice Gas Cellular Automata
New calculations to over ten million time steps have revealed a more complex
diffusive behavior than previously reported, of a point particle on a square
and triangular lattice randomly occupied by mirror or rotator scatterers. For
the square lattice fully occupied by mirrors where extended closed particle
orbits occur, anomalous diffusion was still found. However, for a not fully
occupied lattice the super diffusion, first noticed by Owczarek and Prellberg
for a particular concentration, obtains for all concentrations. For the square
lattice occupied by rotators and the triangular lattice occupied by mirrors or
rotators, an absence of diffusion (trapping) was found for all concentrations,
except on critical lines, where anomalous diffusion (extended closed orbits)
occurs and hyperscaling holds for all closed orbits with {\em universal}
exponents and . Only one point on these critical lines can be related to a
corresponding percolation problem. The questions arise therefore whether the
other critical points can be mapped onto a new percolation-like problem, and of
the dynamical significance of hyperscaling.Comment: 52 pages, including 18 figures on the last 22 pages, email:
[email protected]
Investigating Ca II emission in the RS CVn binary ER Vulpeculae using the Broadening Function Formalism
The synchronously rotating G stars in the detached, short-period (0.7 d),
partially eclipsing binary, ER Vul, are the most chromospherically active
solar-type stars known. We have monitored activity in the Ca II H & K reversals
for almost an entire orbit. Rucinski's Broadening Function Formalism allows the
photospheric contribution to be objectively subtracted from the highly blended
spectra. The power of the BF technique is also demonstrated by the good
agreement of radial velocities with those measured by others from less crowded
spectral regions. In addition to strong Ca II emission from the primary and
secondary, there appears to be a high-velocity stream flowing onto the
secondary where it stimulates a large active region on the surface 30 - 40
degrees in advance of the sub-binary longitude. A model light curve with a spot
centered on the same longitude also gives the best fit to the observed light
curve. A flare with approximately 13% more power than at other phases was
detected in one spectrum. We suggest ER Vul may offer a magnified view of the
more subtle chromospheric effects synchronized to planetary revolution seen in
certain `51 Peg'-type systems.Comment: Accepted to AJ; 17 pages and 16 figure
Condensation of `composite bosons' in a rotating BEC
We provide evidence for several novel phases in the dilute limit of rotating
BECs. By exact calculation of wavefunctions and energies for small numbers of
particles, we show that the states near integer angular momentum per particle
are best considered condensates of composite entities, involving vortices and
atoms. We are led to this result by explicit comparison with a description
purely in terms of vortices. Several parallels with the fractional quantum Hall
effect emerge, including the presence of the Pfaffian state.Comment: 4 pages, Latex, 3 figure
Problems for MOND in Clusters and the Ly-alpha Forest
The observed dynamics of gas and stars on galactic and larger scales cannot
be accounted for by self-gravity, indicating that there are large quantities of
unseen matter, or that gravity is non-Newtonian in these regimes. Milgrom's
MOdified Newtonian Dynamics (MOND) postulates that Newton's laws are modified
at very low acceleration, and can account for the rotation curves of galaxies
and some other astrophysical observations, without dark matter. Here we apply
MOND to two independent physical systems: Ly-alpha absorbers and galaxy
clusters. While physically distinct, both are simple hydrodynamical systems
with characteristic accelerations in the MOND regime. We find that Ly-alpha
absorbers are somewhat smaller than in Newtonian gravity with dark matter, but
the result depends crucially on the (unknown) background acceleration field in
which they are embedded. In clusters MOND appears to explain the observed
(baryonic) mass-temperature relation. However, given observed gas density and
enclosed mass profiles and the assumption of hydrostatic equilibrium, MOND
predicts radial temperature profiles which disagree badly with observations. We
show this explicitly for the Virgo, Abell 2199 and Coma clusters, but the
results are general, and seem very difficult to avoid. If this discrepancy is
to be resolved by positing additional (presumably baryonic) dark matter, then
this dark matter must have ~1-3 times the cluster gas mass within 1 Mpc. This
result strongly disfavors MOND as an alternative to dark matter (Abridged).Comment: Revised version. Important caveat in Ly-alpha calculation discussed;
conclusions weakened. Coma cluster and calculation of dark matter mass
required by MOND added; cluster conclusions strengthened. 11 EmulateApJ pages
with 3 embedded figures. Accepted by Ap
Experiences of refugees and asylum seekers towards access and utilisation of sexual health services: A systematic review
A systematic review protocol for exploring the experiences and utilisation of sexually transmitted infections and HIV testing and treatments among refugees and asylum seekers in both overdeveloped and underdeveloped countries are the contexts of this review. Issues facing refugees and displaced people are some of the most complicated humanitarian concerns globally. The UN Refugee Agency, UK reports that at least 89.3 million people worldwide have been forced to flee their homes (UNHCR UK, 2021). Among them, nearly 27.1million are refugees and 4.6 million are asylum seekers (UNHCR, 2021). Evidence shows the access and utilisation of sexual health services among these populations are comparatively limited
Formation of convective cells in the scrape-off layer of the CASTOR tokamak
Understanding of the scrape-off layer (SOL) physics in tokamaks requires
diagnostics with sufficient temporal and spatial resolution. This contribution
describes results of experiments performed in the SOL of the CASTOR tokamak
(R=40 cm, a = 6 cm) by means of a ring of 124 Langmuir probes surrounding the
whole poloidal cross section. The individual probes measure either the ion
saturation current of the floating potential with the spatial resolution up to
3 mm. Experiments are performed in a particular magnetic configuration,
characterized by a long parallel connection length in the SOL, L_par ~q2piR. We
report on measurements in discharges, where the edge electric field is modified
by inserting a biased electrode into the edge plasma. In particular, a complex
picture is observed, if the biased electrode is located inside the SOL. The
poloidal distribution of the floating potential appears to be strongly
non-uniform at biasing. The peaks of potential are observed at particular
poloidal angles. This is interpreted as formation of a biased flux tube, which
emanates from the electrode along the magnetic field lines and snakes q times
around the torus. The resulting electric field in the SOL is 2-dimensional,
having the radial as well as the poloidal component. It is demonstrated that
the poloidal electric field E_pol convects the edge plasma radially due to the
E_pol x B_T drift either inward or outward depending on its sign. The
convective particle flux is by two orders of magnitude larger than the
fluctuation-induced one and consequently dominates.Comment: 12th International Congress on Plasma Physics, 25-29 October 2004,
Nice (France
Asymmetric supernova in hierarchical multiple star systems and application to J1903+0327
We develop a method to analyze the effect of an asymmetric supernova on
hierarchical multiple star systems and we present analytical formulas to
calculate orbital parameters for surviving binaries or hierarchical triples and
runaway velocities for their dissociating equivalents. The effect of an
asymmetric supernova on the orbital parameters of a binary system has been
studied to great extent (e.g. Hills 1983; Kalogera 1996; Tauris & Takens 1998),
but this effect on higher multiplicity hierarchical systems has not been
explored before. With our method, the supernova effect can be computed by
reducing the hierarchical multiple to an effective binary by means of
recursively replacing the inner binary by an effective star at the center of
mass of that binary. We apply our method to a hierarchical triple system
similar to the progenitor of PSR J1903+0327 suggested by Portegies Zwart et al.
(2011). We confirm their earlier finding that PSR J1903+0327 could have evolved
from a hierarchical triple that became unstable and ejected the secondary star
of the inner binary. Furthermore, if such as system did evolve via this
mechanism the most probable configuration would be a small supernova kick
velocity, an inner binary with a large semi-major axis, and the fraction of
mass accreted onto the neutron star to the mass lost by the secondary would
most likely be between 0.35 and 0.5Comment: 13 pages, 9 figures, accepted for publication in MNRA
- …