30 research outputs found

    Structural behavior of cylindrical polystyrene-block-poly(ethylene-butylene)-block-polystyrene (SEBS) triblock copolymer containing MWCNTs: on the influence of nanoparticle surface modification

    Get PDF
    In this work, the influence of carbon nanotubes (CNTs) on the self-assembly of nanocomposite materials made of cylinder-forming polystyrene-block-poly(ethylene- butylene)-block-polystyrene (SEBS) is studied. CNTs are modified with polystyrene (PS) brushes by surface-initiated atom transfer radical polymerization to facilitate both their dispersion and the orientation of neighboring PS domains of the block copolymer (BCP) along modified CNT-PS. Dynamic rheology is utilized to probe the viscoelastic and thermal response of the nanoscopic structure of BCP nanocomposites. The results indicate that nonmodified CNTs increase the BCP microphase separation temperature because of BCP segmental confinement in the existing 3D network formed between CNTs, while the opposite holds for the samples filled with modified CNT-PS. This is explained by severely retarded segmental motion of the matrix chains due to their preferential interactions with the PS chains of the CNT-PS. Moreover, transient viscoelastic analysis reveals that modified CNT-PS have a more pronounced effect on flow-induced BCP structural orientation with much lower structural recovery rate. It is demonstrated that dynamic-mechanical thermal analysis can provide valuable insights in understanding the role of CNT incorporation on the microstructure of BCP nanocomposite samples. Accordingly, the presence of CNT has a significant promoting effect on microstructural development, comparable to that of annealing

    Melt-spun nanocomposite fibers reinforced with aligned tunicate nanocrystals

    Get PDF
    The fabrication of nanocomposite films and fibers based on cellulose nanocrystals (P-tCNCs) and a thermoplastic polyurethane (PU) elastomer is reported. High-aspect-ratio P-tCNCs were isolated from tunicates using phosphoric acid hydrolysis, which is a process that affords nanocrystals displaying high thermal stability. Nanocomposites were produced by solvent casting (films) or melt-mixing in a twin-screw extruder and subsequent melt-spinning (fibers). The processing protocols were found to affect the orientation of both PU hard segments and the P-tCNCs within the PU matrix and therefore the mechanical properties. While the films were isotropic, both the polymer matrix and the P-tCNCs proved to be aligned along the fiber direction in the fibers, as shown using SAXS/WAXS, angle-dependent Raman spectroscopy, and birefringence analysis. Tensile tests reveal that fibers and films, at similar P-tCNC contents, display Young’s moduli and strain-at-break that are within the same order of magnitude, but the stress-at-break was found to be ten-times higher for fibers, conferring them a superior toughness over films

    Biopolymer photonics: from nature to nanotechnology

    Get PDF
    Biopolymers offer vast potential for renewable and sustainable devices. While nature mastered the use of biopolymers to create highly complex 3D structures and optimized their photonic response, artificially created structures still lack nature's diversity. To bridge this gap between natural and engineered biophotonic structures, fundamental questions such as the natural formation process and the interplay of structural order and disorder must be answered. Herein, biological photonic structures and their characterization techniques are reviewed, focusing on those structures not yet artificially manufactured. Then, employed and potential nanofabrication strategies for biomimetic, bio-templated, and artificially created biopolymeric photonic structures are discussed. The discussion is extended to responsive biopolymer photonic structures and hybrid structures. Last, future fundamental physics, chemistry, and nanotechnology challenges related to biopolymer photonics are foreseen.Peer ReviewedPostprint (published version

    Tuning the properties of a UV-polymerized, cross-linked solid polymer electrolyte for lithium batteries

    Get PDF
    Lithium metal anodes have been pursued for decades as a way to significantly increase the energy density of lithium-ion batteries. However, safety risks caused by flammable liquid electrolytes and short circuits due to lithium dendrite formation during cell cycling have so far prevented the use of lithium metal in commercial batteries. Solid polymer electrolytes (SPEs) offer a potential solution if their mechanical properties and ionic conductivity can be simultaneously engineered. Here, we introduce a family of SPEs that are scalable and easy to prepare with a photopolymerization process, synthesized from amphiphilic acrylic polymer conetworks based on poly(ethylene glycol), 2-hydroxy-ethylacrylate, norbornyl acrylate, and either lithium bis (trifluoromethanesulfonyl) imide (LiTFSI) or a single-ion polymethacrylate as lithium-ion source. Several conetworks were synthesized and cycled, and their ionic conductivity, mechanical properties, and lithium transference number were characterized. A single-ion-conducting polymer electrolyte shows the best compromise between the different properties and extends the calendar life of the cell

    Phase segregation in supramolecular polymers based on telechelics synthesized via multicomponent reactions

    Get PDF
    The properties of supramolecular polymers in the solid state are strongly dependent on the binding strength of the supramolecular motifs used; however, It has been previously shown that the nanostructure of supramolecular polymers plays an equally important role. Supramolecular polymers are commonly synthesized via end-group functionalization of low-glass transition telechelics with supramolecular units. In these systems, the binding motifs segregate from the soft telechelic backbone and form a hydrogen bonded crystalline hard phase that provides physical cross-links. To date, the reported synthetic approaches do not permit the introduction of a wide variety of supramolecular units with low synthetic effort, which would facilitate studying the structure-property relationships. The use of the Passerini and Ugi multicomponent reactions to synthesize various poly(ethylene-co-butylene) telechelics with diverse amide end-groups is reported. The thermal properties of the supramolecular polymers obtained through their solid-state assembly are investigated and their nanophase- segregation is studied, which is dictated by the end-group volume fraction and the amide–amide hydrogen bonding

    Optical Imaging of Large Gyroid Grains in Block Copolymer Templates by Confined Crystallization.

    Get PDF
    Block copolymer (BCP) self-assembly is a promising route to manufacture functional nanomaterials for applications from nanolithography to optical metamaterials. Self-assembled cubic morphologies cannot, however, be conveniently optically characterized in the lab due to their structural isotropy. Here, the aligned crystallization behavior of a semicrystalline-amorphous polyisoprene-b-polystyrene-b-poly(ethylene oxide) (ISO) triblock terpolymer was utilized to visualize the grain structure of the cubic microphase-separated morphology. Upon quenching from a solvent swollen state, ISO first self-assembles into an alternating gyroid morphology, in the confinement of which the PEO crystallizes preferentially along the least tortuous pathways of the single gyroid morphology with grain sizes of hundreds of micrometers. Strikingly, the resulting anisotropic alignment of PEO crystallites gives rise to a unique optical birefringence of the alternating gyroid domains, which allows imaging of the self-assembled grain structure by optical microscopy alone. This study provides insight into polymer crystallization within a tortuous three-dimensional network and establishes a useful method for the optical visualization of cubic BCP morphologies that serve as functional nanomaterial templates.This research was supported through the Swiss National Science Foundation through grant numbers 163220 (U.S.) and 168223 (B.D.W.), the National Center of Competence in Research Bio-Inspired Materials (U.S., B.D.W, I.G.), the Adolphe Merkle Foundation (B.D.W., U.S., I.G.), the Engineering and Physical Sciences Research Council through the Cambridge NanoDTC EP/G037221/1, EP/L027151/1, EP/N016920/1, and EP/G060649/1 (R.D., J.A.D., J.J.B.), and ERC LINASS 320503 (J.J.B.). This project has also received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 706329/cOMPoSe (I.G.). Y.G. and U.W. thank the National Science Foundation (DMR-1409105) for financial support. Part of the work was conducted at beamline D1 at the Cornell High Energy Synchrotron Source (CHESS); CHESS is supported by the NSF and NIH/NIGMS via NSF award DMR-1332208. We also thank Diamond Light Source for access to beamline I22 (SM13448) that contributed to the results presented here

    Rendering polyurethane hydrophilic for efficient cellulose reinforcement in melt-spun nanocomposite fibers

    Get PDF
    Many commodity plastics, such as thermoplastic polyurethanes (PUs), require reinforcement for use as commercial products. Cellulose nanocrystals (CNCs) offer a “green” and scalable approach to polymer reinforcement as they are exceptionally stiff, recyclable, and abundant. Unfortunately, achieving efficient CNC reinforcement of PUs with industrial melt processing techniques is difficult, mostly due to the incompatibility of the hydrophobic PU with hydrophilic CNCs, limiting their dispersion. Here, a hydrophilic PU is synthesized to achieve strong reinforcement in melt‐processed nanocomposite fibers using filter paper‐sourced CNCs. The melt‐spun fibers, exhibiting smooth surfaces even at high CNC loading (up to 25 wt%) indicating good CNC dispersion, are bench‐marked against solvent‐cast films—solvent processing is not scalable but disperses CNCs well and produces strong CNC reinforcement. Mechanical analysis shows the CNC addition stiffens both nanocomposite films and fibers. The stress and strain at break, however, are not significantly affected in films, whereas adding CNCs to fibers increases the stress‐at‐break while reducing the strain‐at‐break. Compared to earlier studies employing a hydrophobic (and stiffer) PU, CNC addition to a hydrophilic PU substantially increases the fiber stiffness and strength. This work therefore suggests that rendering thermoplastics more hydrophilic might pave the way for “greener” polymer composite products using CNCs
    corecore