181 research outputs found
Strict Limit on CPT Violation from Polarization of Gamma-Ray Bursts
We report the strictest observational verification of CPT invariance in the
photon sector, as a result of gamma-ray polarization measurement of distant
gamma-ray bursts (GRBs), which are brightest stellar-size explosions in the
universe. We detected the gamma-ray polarization of three GRBs with high
significance, and the source distances may be constrained by a well-known
luminosity indicator for GRBs. For the Lorentz- and CPT-violating dispersion
relation E_{\pm}^2=p^2 \pm 2\xi p^3/M_{Pl}, where \pm denotes different
circular polarization states of the photon, the parameter \xi is constrained as
|\xi|<O(10^{-15}). Barring precise cancellation between quantum gravity effects
and dark energy effects, the stringent limit on the CPT-violating effect leads
to the expectation that quantum gravity presumably respects the CPT invariance.Comment: 4 pages; accepted for publication in Physical Review Letters;
redshift estimates of GRBs changed (i.e z=0.382 was wrong for GRB 110721A)
and calculations of \xi limit improved from the previous versio
Development of the photomultiplier tube readout system for the first Large-Sized Telescope of the Cherenkov Telescope Array
The Cherenkov Telescope Array (CTA) is the next generation ground-based very
high energy gamma-ray observatory. The Large-Sized Telescope (LST) of CTA
targets 20 GeV -- 1 TeV gamma rays and has 1855 photomultiplier tubes (PMTs)
installed in the focal plane camera. With the 23 m mirror dish, the night sky
background (NSB) rate amounts to several hundreds MHz per pixel. In order to
record clean images of gamma-ray showers with minimal NSB contamination, a fast
sampling of the signal waveform is required so that the signal integration time
can be as short as the Cherenkov light flash duration (a few ns). We have
developed a readout board which samples waveforms of seven PMTs per board at a
GHz rate. Since a GHz FADC has a high power consumption, leading to large heat
dissipation, we adopted the analog memory ASIC "DRS4". The sampler has 1024
capacitors per channel and can sample the waveform at a GHz rate. Four channels
of a chip are cascaded to obtain deeper sampling depth with 4096 capacitors.
After a trigger is generated in a mezzanine on the board, the waveform stored
in the capacitor array is subsequently digitized with a low speed (33 MHz) ADC
and transferred via the FPGA-based Gigabit Ethernet to a data acquisition
system. Both a low power consumption (2.64 W per channel) and high speed
sampling with a bandwidth of 300 MHz have been achieved. In addition, in
order to increase the dynamic range of the readout we adopted a two gain system
achieving from 0.2 up to 2000 photoelectrons in total. We finalized the board
design for the first LST and proceeded to mass production. Performance of
produced boards are being checked with a series of quality control (QC) tests.
We report the readout board specifications and QC results.Comment: In Proceedings of the 34th International Cosmic Ray Conference
(ICRC2015), The Hague, The Netherlands. All CTA contributions at
arXiv:1508.0589
PoGOLite - A High Sensitivity Balloon-Borne Soft Gamma-ray Polarimeter
We describe a new balloon-borne instrument (PoGOLite) capable of detecting
10% polarisation from 200mCrab point-like sources between 25 and 80keV in one 6
hour flight. Polarisation measurements in the soft gamma-ray band are expected
to provide a powerful probe into high-energy emission mechanisms as well as the
distribution of magnetic fields, radiation fields and interstellar matter. At
present, only exploratory polarisation measurements have been carried out in
the soft gamma-ray band. Reduction of the large background produced by
cosmic-ray particles has been the biggest challenge. PoGOLite uses Compton
scattering and photo-absorption in an array of 217 well-type phoswich detector
cells made of plastic and BGO scintillators surrounded by a BGO anticoincidence
shield and a thick polyethylene neutron shield. The narrow FOV (1.25msr)
obtained with well-type phoswich detector technology and the use of thick
background shields enhance the detected S/N ratio. Event selections based on
recorded phototube waveforms and Compton kinematics reduce the background to
that expected for a 40-100mCrab source between 25 and 50keV. A 6 hour
observation on the Crab will differentiate between the Polar Cap/Slot Gap,
Outer Gap, and Caustic models with greater than 5 sigma; and also cleanly
identify the Compton reflection component in the Cygnus X-1 hard state. The
first flight is planned for 2010 and long-duration flights from Sweden to
Northern Canada are foreseen thereafter.Comment: 11 pages, 11 figures, 2 table
Detection of Pulsed X-ray Emission from The Fastest Millisecond Pulsar PSR B1937+21 with ASCA
We have detected pulsed X-ray emission from the fastest millisecond pulsar
known, PSR B1937+21 (P=1.558 msec), with ASCA. The pulsar is detected as a
point source above keV, with no indication of nebulosity. The source
flux in the 2--10 keV band is found to be
erg s cm, which implies an isotropic luminosity of erg s,
where D is the distance, and an X-ray efficiency of
relative to the spin-down power of the pulsar.
The pulsation is found at the period predicted by the radio ephemeris with a
very narrow primary peak, the width of which is about 1/16 phase (s), near the time resolution limit (s) of the observation. The
instantaneous flux in the primary peak (1/16 phase interval) is found to be
( erg s cm. Although there is an
indication for the secondary peak, we consider its statistical significance too
low to claim a definite detection.
The narrow pulse profile and the detection in the 2--10 keV band imply that
the X-ray emission is caused by the magnetospheric particle acceleration.
Comparison of X-ray and radio arrival times of pulses indicates, within the
timing errors, that the X-ray pulse is coincident with the radio interpulse.Comment: 14 pages with 5 figures. Ap. J. in pres
Development of an atmospheric Cherenkov imaging camera for the CANGAROO-III experiment
A Cherenkov imaging camera for the CANGAROO-III experiment has been developed
for observations of gamma-ray induced air-showers at energies from 10 to
10 eV. The camera consists of 427 pixels, arranged in a hexagonal shape
at 0.17 intervals, each of which is a 3/4-inch diameter photomultiplier
module with a Winston-cone--shaped light guide. The camera was designed to have
a large dynamic range of signal linearity, a wider field of view, and an
improvement in photon collection efficiency compared with the CANGAROO-II
camera. The camera, and a number of the calibration experiments made to test
its performance, are described in detail in this paper.Comment: 25 pages, 29 figures, elsart.cls, to appear in NIM-
The Imaging X-ray Polarimetry Explorer (IXPE): Technical Overview
The Imaging X-ray Polarimetry Explorer (IXPE) will expand the information space for study of cosmic sources, by adding linear polarization to the properties (time, energy, and position) observed in x-ray astronomy. Selected in 2017 January as a NASA Astrophysics Small Explorer (SMEX) mission, IXPE will be launched into an equatorial orbit in 2021. The IXPE mission will provide scientifically meaningful measurements of the x-ray polarization of a few dozen sources in the 2-8 keV band, including polarization maps of several x-ray-bright extended sources and phase-resolved polarimetry of many bright pulsating x-ray sources
The X-ray Polarization Probe mission concept
The X-ray Polarization Probe (XPP) is a second generation X-ray polarimeter
following up on the Imaging X-ray Polarimetry Explorer (IXPE). The XPP will
offer true broadband polarimetery over the wide 0.2-60 keV bandpass in addition
to imaging polarimetry from 2-8 keV. The extended energy bandpass and
improvements in sensitivity will enable the simultaneous measurement of the
polarization of several emission components. These measurements will give
qualitatively new information about how compact objects work, and will probe
fundamental physics, i.e. strong-field quantum electrodynamics and strong
gravity.Comment: submitted to Astrophysics Decadal Survey as a State of the Profession
white pape
Observations of 4U 1626-67 with the Imaging X-ray Polarimetry Explorer
We present measurements of the polarization of X-rays in the 2-8 keV band
from the pulsar in the ultracompact low mass X-ray binary 4U1626-67 using data
from the Imaging X-ray Polarimetry Explorer (IXPE). The 7.66 s pulsations were
clearly detected throughout the IXPE observations as well as in the NICER soft
X-ray observations, which we use as the basis for our timing analysis and to
constrain the spectral shape over 0.4-10 keV energy band. Chandra HETGS
high-resolution X-ray spectra were also obtained near the times of the IXPE
observations for firm spectral modeling. We find an upper limit on the
pulse-averaged linear polarization of <4% (at 95% confidence). Similarly, there
was no significant detection of polarized flux in pulse phase intervals when
subdividing the bandpass by energy. However, spectropolarimetric modeling over
the full bandpass in pulse phase intervals provide a marginal detection of
polarization of the power-law spectral component at the 4.8 +/- 2.3% level (90%
confidence). We discuss the implications concerning the accretion geometry onto
the pulsar, favoring two-component models of the pulsed emission.Comment: 19 pages, 7 figures, 7 tables; accepted for publication in the
Astrophysical Journa
X-ray polarimetry reveals the magnetic field topology on sub-parsec scales in Tycho's supernova remnant
Supernova remnants are commonly considered to produce most of the Galactic
cosmic rays via diffusive shock acceleration. However, many questions about the
physical conditions at shock fronts, such as the magnetic-field morphology
close to the particle acceleration sites, remain open. Here we report the
detection of a localized polarization signal from some synchrotron X-ray
emitting regions of Tycho's supernova remnant made by the Imaging X-ray
Polarimetry Explorer. The derived polarization degree of the X-ray synchrotron
emission is 9+/-2% averaged over the whole remnant, and 12+/-2% at the rim,
higher than the 7-8% polarization value observed in the radio band. In the west
region the polarization degree is 23+/-4%. The X-ray polarization degree in
Tycho is higher than for Cassiopeia A, suggesting a more ordered magnetic-field
or a larger maximum turbulence scale. The measured tangential polarization
direction corresponds to a radial magnetic field, and is consistent with that
observed in the radio band. These results are compatible with the expectation
of turbulence produced by an anisotropic cascade of a radial magnetic-field
near the shock, where we derive a magnetic-field amplification factor of
3.4+/-0.3. The fact that this value is significantly smaller than those
expected from acceleration models is indicative of highly anisotropic
magnetic-field turbulence, or that the emitting electrons either favor regions
of lower turbulence, or accumulate close to where the magnetic-field
orientation is preferentially radially oriented due to hydrodynamical
instabilities.Comment: 31 pages, 7 figures, 3 tables. Accepted for publication in ApJ.
Revised versio
IXPE and XMM-Newton observations of the Soft Gamma Repeater SGR 1806-20
Recent observations with the Imaging X-ray Polarimetry Explorer (IXPE) of two
anomalous X-ray pulsars provided evidence that X-ray emission from magnetar
sources is strongly polarized. Here we report on the joint IXPE and XMM-Newton
observations of the soft {\gamma}-repeater SGR 1806-20. The spectral and timing
properties of SGR 1806-20 derived from XMM-Newton data are in broad agreement
with previous measurements; however, we found the source at an all-time-low
persistent flux level. No significant polarization was measured apart from the
4-5 keV energy range, where a probable detection with PD=31.6\pm 10.5% and
PA=-17.6\pm 15 deg was obtained. The resulting polarization signal, together
with the upper limits we derive at lower and higher energies 2-4 and 5-8 keV,
respectively) is compatible with a picture in which thermal radiation from the
condensed star surface is reprocessed by resonant Compton scattering in the
magnetosphere, similar to what proposed for the bright magnetar 4U 0142+61.Comment: 11 pages, 3 figures, accepted for publication in Ap
- …