363 research outputs found

    Report on National ICP IM activities in Sweden 2014 – 2015

    Get PDF
    The Swedish integrated monitoring programme is run on four sites distributed from south central Sweden (SE14 Aneboda) over the middle part (SE15 Kindla), to a northerly site (SE16 Gammtratten). The long-term monitoring site SE04 GÄrdsjön F1 is complementary on the inland of the West Coast and has been influenced by long-term high deposition loads. The sites are well-defined catchments with mainly coniferous forest stands dominated by bilberry spruce forests on glacial till deposited above the highest coastline. Hence, there has been no water sorting of the soil material. Both climate and deposition gradients coincide with the distribution of the sites from south to nort

    Report on National ICP IM activities in Sweden in 2016

    Get PDF
    The Swedish integrated monitoring programme is run on four sites distributed from south central Sweden (SE14 Aneboda), over the middle part (SE15 Kindla), to a northerly site (SE16 Gammtratten). The long-term monitoring site SE04 GĂ„rdsjön F1 is complementary on the inland of the West Coast and has been influenced by long-term high deposition loads. The sites are well-defined catchments with mainly coniferous forest stands dominated by bilberry spruce forests on glacial till deposited above the highest coastline. Hence, there has been no water sorting of the soil material. Both climate and deposition gradients coincide with the distribution of the sites from south to north (Table 1). The forest stands are mainly over 100 years old and at least three of them have several hundred years of natural continuity. Until the 1950’s, the woodlands were lightly grazed in restricted areas. In early 2005, a heavy storm struck the IM site Aneboda, SE14. Compared with other forests in the region, however, this site managed rather well and roughly 20–30% of the trees in the area were stormfelled. In 1996, the total number of large woody debris in the form of logs was 317 in the surveyed plots, which decreased to 257 in 2001. In 2006, after the storm, the number of logs increased to 433, corresponding to 2711 logs in the whole catchment. In later years, 2007–2010, bark beetle (Ips typographus) infestation has almost totally erased the old spruce trees. In 2011 more than 80% of the trees with a breast height over 35 cm were dead (Löfgren et al. 2014) and currently almost all spruce trees with diameter of ≄20 cm are gone. In the following, climate, hydrology, water chemistry and some ongoing work at the four Swedish IM sites in 2016 are presented (Löfgren 2017)

    Good Agreement Between Modeled and Measured Sulfur and Nitrogen Deposition in Europe, in Spite of Marked Differences in Some Sites

    Get PDF
    Atmospheric nitrogen and sulfur deposition is an important effect of atmospheric pollution and may affect forest ecosystems positively, for example enhancing tree growth, or negatively, for example causing acidification, eutrophication, cation depletion in soil or nutritional imbalances in trees. To assess and design measures to reduce the negative impacts of deposition, a good estimate of the deposition amount is needed, either by direct measurement or by modeling. In order to evaluate the precision of both approaches and to identify possible improvements, we compared the deposition estimates obtained using an Eulerian model with the measurements performed by two large independent networks covering most of Europe. The results are in good agreement (bias <25%) for sulfate and nitrate open field deposition, while larger differences are more evident for ammonium deposition, likely due to the greater influence of local ammonia sources. Modeled sulfur total deposition compares well with throughfall deposition measured in forest plots, while the estimate of nitrogen deposition is affected by the tree canopy. The geographical distribution of pollutant deposition and of outlier sites where model and measurements show larger differences are discussed

    Biomass burning in eastern Europe during spring 2006 caused high deposition of ammonium in northern Fennoscandia

    Get PDF
    High air concentrations of ammonium were detected at low and high altitude sites in Sweden, Finland and Norway during the spring 2006, coinciding with polluted air from biomass burning in eastern Europe passing over central and northern Fennoscandia. Unusually high values for throughfall deposition of ammonium were detected at one low altitude site and several high altitude sites in north Sweden. The occurrence of the high ammonium in throughfall differed between the summer months 2006, most likely related to the timing of precipitation events. The ammonia dry deposition may have contributed to unusual visible injuries on the tree vegetation in northern Fennoscandia that occurred during 2006, in combination with high ozone concentrations. It is concluded that long-range transport of ammonium from large-scale biomass burning may contribute substantially to the nitrogen load at northern latitudes. (C) 2013 Elsevier Ltd. All rights reserved

    Spatial and Temporal Patterns in Atmospheric Deposition of Dissolved Organic Carbon

    Get PDF
    Atmospheric deposition of dissolved organic carbon (DOC) to terrestrial ecosystems is a small, but rarely studied component of the global carbon (C) cycle. Emissions of volatile organic compounds (VOC) and organic particulates are the sources of atmospheric C and deposition represents a major pathway for the removal of organic C from the atmosphere. Here, we evaluate the spatial and temporal patterns of DOC deposition using 70 data sets at least one year in length ranging from 40° south to 66° north latitude. Globally, the median DOC concentration in bulk deposition was 1.7 mg L−1. The DOC concentrations were significantly higher in tropical (25°) latitudes. DOC deposition was significantly higher in the tropics because of both higher DOC concentrations and precipitation. Using the global median or latitudinal specific DOC concentrations leads to a calculated global deposition of 202 or 295 Tg C yr−1 respectively. Many sites exhibited seasonal variability in DOC concentration. At temperate sites, DOC concentrations were higher during the growing season; at tropical sites, DOC concentrations were higher during the dry season. Thirteen of the thirty-four long-term (>10 years) data sets showed significant declines in DOC concentration over time with the others showing no significant change. Based on the magnitude and timing of the various sources of organic C to the atmosphere, biogenic VOCs likely explain the latitudinal pattern and the seasonal pattern at temperate latitudes while decreases in anthropogenic emissions are the most likely explanation for the declines in DOC concentration.publishedVersio

    Spatial and Temporal Patterns in Atmospheric Deposition of Dissolved Organic Carbon

    Get PDF
    Atmospheric deposition of dissolved organic carbon (DOC) to terrestrial ecosystems is a small, but rarely studied component of the global carbon (C) cycle. Emissions of volatile organic compounds (VOC) and organic particulates are the sources of atmospheric C and deposition represents a major pathway for the removal of organic C from the atmosphere. Here, we evaluate the spatial and temporal patterns of DOC deposition using 70 data sets at least one year in length ranging from 40° south to 66° north latitude. Globally, the median DOC concentration in bulk deposition was 1.7 mg L−1^{−1}. The DOC concentrations were significantly higher in tropical (25°) latitudes. DOC deposition was significantly higher in the tropics because of both higher DOC concentrations and precipitation. Using the global median or latitudinal specific DOC concentrations leads to a calculated global deposition of 202 or 295 Tg C yr−1^{−1} respectively. Many sites exhibited seasonal variability in DOC concentration. At temperate sites, DOC concentrations were higher during the growing season; at tropical sites, DOC concentrations were higher during the dry season. Thirteen of the thirty-four long-term (>10 years) data sets showed significant declines in DOC concentration over time with the others showing no significant change. Based on the magnitude and timing of the various sources of organic C to the atmosphere, biogenic VOCs likely explain the latitudinal pattern and the seasonal pattern at temperate latitudes while decreases in anthropogenic emissions are the most likely explanation for the declines in DOC concentration
    • 

    corecore