59 research outputs found

    Pesticides in house dust from urban and farmworker households in California: an observational measurement study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Studies report that residential use of pesticides in low-income homes is common because of poor housing conditions and pest infestations; however, exposure data on contemporary-use pesticides in low-income households is limited. We conducted a study in low-income homes from urban and agricultural communities to: characterize and compare house dust levels of agricultural and residential-use pesticides; evaluate the correlation of pesticide concentrations in samples collected several days apart; examine whether concentrations of pesticides phased-out for residential uses, but still used in agriculture (i.e., chlorpyrifos and diazinon) have declined in homes in the agricultural community; and estimate resident children's pesticide exposures via inadvertent dust ingestion.</p> <p>Methods</p> <p>In 2006, we collected up to two dust samples 5-8 days apart from each of 13 urban homes in Oakland, California and 15 farmworker homes in Salinas, California, an agricultural community (54 samples total). We measured 22 insecticides including organophosphates (chlorpyrifos, diazinon, diazinon-oxon, malathion, methidathion, methyl parathion, phorate, and tetrachlorvinphos) and pyrethroids (allethrin-two isomers, bifenthrin, cypermethrin-four isomers, deltamethrin, esfenvalerate, imiprothrin, permethrin-two isomers, prallethrin, and sumithrin), one phthalate herbicide (chlorthal-dimethyl), one dicarboximide fungicide (iprodione), and one pesticide synergist (piperonyl butoxide).</p> <p>Results</p> <p>More than half of the households reported applying pesticides indoors. Analytes frequently detected in both locations included chlorpyrifos, diazinon, permethrin, allethrin, cypermethrin, and piperonyl butoxide; no differences in concentrations or loadings were observed between locations for these analytes. Chlorthal-dimethyl was detected solely in farmworker homes, suggesting contamination due to regional agricultural use. Concentrations in samples collected 5-8 days apart in the same home were strongly correlated for the majority of the frequently detected analytes (Spearman ρ = 0.70-1.00, p < 0.01). Additionally, diazinon and chlorpyrifos concentrations in Salinas farmworker homes were 40-80% lower than concentrations reported in samples from Salinas farmworker homes studied between 2000-2002, suggesting a temporal reduction after their residential phase-out. Finally, estimated non-dietary pesticide intake for resident children did not exceed current U.S. Environmental Protection Agency's (U.S. EPA) recommended chronic reference doses (RfDs).</p> <p>Conclusion</p> <p>Low-income children are potentially exposed to a mixture of pesticides as a result of poorer housing quality. Historical or current pesticide use indoors is likely to contribute to ongoing exposures. Agricultural pesticide use may also contribute to additional exposures to some pesticides in rural areas. Although children's non-dietary intake did not exceed U.S. EPA RfDs for select pesticides, this does not ensure that children are free of any health risks as RfDs have their own limitations, and the children may be exposed indoors via other pathways. The frequent pesticide use reported and high detection of several home-use pesticides in house dust suggests that families would benefit from integrated pest management strategies to control pests and minimize current and future exposures.</p

    Associations between self-reported pest treatments and pesticide concentrations in carpet dust

    Get PDF
    BACKGROUND: Recent meta-analyses demonstrate an association between self-reported residential pesticide use and childhood leukemia risk. Self-reports may suffer from recall bias and provide information only on broad pesticide categories. We compared parental self-reported home and garden pest treatments to pesticides measured in carpet dust. METHODS: Parents of 277 children with leukemia and 306 controls in Northern and Central California (2001–2007) were asked about insect and weed treatments during the previous year. Carpet dust samples were analyzed for 47 pesticides. We present results for the 7 insecticides (carbaryl, propoxur, chlorpyrifos, diazinon, cyfluthrin, cypermethrin, permethrin), 5 herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], chlorthal, dicamba, mecoprop, simazine), and 1 synergist (piperonyl butoxide) that were present in home and garden products during the study period and were detected in ≥25% of carpet dust samples. We constructed linear regression models for the relative change in pesticide concentrations associated with self-reported treatment of pest types in cases and controls separately and combined, adjusting for demographics, housing characteristics, and nearby agricultural pesticide applications. RESULTS: Several self-reported treatments were associated with pesticide concentrations in dust. For example, households with flea/tick treatments had 2.3 (95% Confidence Interval [CI]: 1.4, 3.7) times higher permethrin concentrations than households not reporting this treatment. Households reporting treatment for ants/cockroaches had 2.5 (95% CI: 1.5, 4.2) times higher cypermethrin levels than households not reporting this treatment. Weed treatment by a household member was associated with 1.9 (1.4, 2.6), 2.2 (1.6, 3.1), and 2.8 (2.1, 3.7) times higher dust concentrations of dicamba, mecoprop, and 2,4-D, respectively. Weed treatments by professional applicators were null/inversely associated with herbicide concentrations in dust. Associations were generally similar between cases and controls and were consistent with pesticide active ingredients in these products during the study time period. CONCLUSIONS: Consistency between self-reported pest treatments, concentrations in dust, and pesticides in products lends credibility to the exposure assessment methods and suggests that differential recall by case–control status is minimal. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12940-015-0015-x) contains supplementary material, which is available to authorized users

    Maternal and Neonatal Morbidity and Mortality Among Pregnant Women With and Without COVID-19 Infection: The INTERCOVID Multinational Cohort Study.

    Get PDF
    Importance: Detailed information about the association of COVID-19 with outcomes in pregnant individuals compared with not-infected pregnant individuals is much needed. Objective: To evaluate the risks associated with COVID-19 in pregnancy on maternal and neonatal outcomes compared with not-infected, concomitant pregnant individuals. Design, Setting, and Participants: In this cohort study that took place from March to October 2020, involving 43 institutions in 18 countries, 2 unmatched, consecutive, not-infected women were concomitantly enrolled immediately after each infected woman was identified, at any stage of pregnancy or delivery, and at the same level of care to minimize bias. Women and neonates were followed up until hospital discharge. Exposures: COVID-19 in pregnancy determined by laboratory confirmation of COVID-19 and/or radiological pulmonary findings or 2 or more predefined COVID-19 symptoms. Main Outcomes and Measures: The primary outcome measures were indices of (maternal and severe neonatal/perinatal) morbidity and mortality; the individual components of these indices were secondary outcomes. Models for these outcomes were adjusted for country, month entering study, maternal age, and history of morbidity. Results: A total of 706 pregnant women with COVID-19 diagnosis and 1424 pregnant women without COVID-19 diagnosis were enrolled, all with broadly similar demographic characteristics (mean [SD] age, 30.2 [6.1] years). Overweight early in pregnancy occurred in 323 women (48.6%) with COVID-19 diagnosis and 554 women (40.2%) without. Women with COVID-19 diagnosis were at higher risk for preeclampsia/eclampsia (relative risk [RR], 1.76; 95% CI, 1.27-2.43), severe infections (RR, 3.38; 95% CI, 1.63-7.01), intensive care unit admission (RR, 5.04; 95% CI, 3.13-8.10), maternal mortality (RR, 22.3; 95% CI, 2.88-172), preterm birth (RR, 1.59; 95% CI, 1.30-1.94), medically indicated preterm birth (RR, 1.97; 95% CI, 1.56-2.51), severe neonatal morbidity index (RR, 2.66; 95% CI, 1.69-4.18), and severe perinatal morbidity and mortality index (RR, 2.14; 95% CI, 1.66-2.75). Fever and shortness of breath for any duration was associated with increased risk of severe maternal complications (RR, 2.56; 95% CI, 1.92-3.40) and neonatal complications (RR, 4.97; 95% CI, 2.11-11.69). Asymptomatic women with COVID-19 diagnosis remained at higher risk only for maternal morbidity (RR, 1.24; 95% CI, 1.00-1.54) and preeclampsia (RR, 1.63; 95% CI, 1.01-2.63). Among women who tested positive (98.1% by real-time polymerase chain reaction), 54 (13%) of their neonates tested positive. Cesarean delivery (RR, 2.15; 95% CI, 1.18-3.91) but not breastfeeding (RR, 1.10; 95% CI, 0.66-1.85) was associated with increased risk for neonatal test positivity. Conclusions and Relevance: In this multinational cohort study, COVID-19 in pregnancy was associated with consistent and substantial increases in severe maternal morbidity and mortality and neonatal complications when pregnant women with and without COVID-19 diagnosis were compared. The findings should alert pregnant individuals and clinicians to implement strictly all the recommended COVID-19 preventive measures

    Preeclampsia and COVID-19: results from the INTERCOVID prospective longitudinal study.

    Get PDF
    BACKGROUND: It is unclear whether the suggested link between COVID-19 during pregnancy and preeclampsia is an independent association or if these are caused by common risk factors. OBJECTIVE: This study aimed to quantify any independent association between COVID-19 during pregnancy and preeclampsia and to determine the effect of these variables on maternal and neonatal morbidity and mortality. STUDY DESIGN: This was a large, longitudinal, prospective, unmatched diagnosed and not-diagnosed observational study assessing the effect of COVID-19 during pregnancy on mothers and neonates. Two consecutive not-diagnosed women were concomitantly enrolled immediately after each diagnosed woman was identified, at any stage during pregnancy or delivery, and at the same level of care to minimize bias. Women and neonates were followed until hospital discharge using the standardized INTERGROWTH-21st protocols and electronic data management system. A total of 43 institutions in 18 countries contributed to the study sample. The independent association between the 2 entities was quantified with the risk factors known to be associated with preeclampsia analyzed in each group. The outcomes were compared among women with COVID-19 alone, preeclampsia alone, both conditions, and those without either of the 2 conditions. RESULTS: We enrolled 2184 pregnant women; of these, 725 (33.2%) were enrolled in the COVID-19 diagnosed and 1459 (66.8%) in the COVID-19 not-diagnosed groups. Of these women, 123 had preeclampsia of which 59 of 725 (8.1%) were in the COVID-19 diagnosed group and 64 of 1459 (4.4%) were in the not-diagnosed group (risk ratio, 1.86; 95% confidence interval, 1.32-2.61). After adjustment for sociodemographic factors and conditions associated with both COVID-19 and preeclampsia, the risk ratio for preeclampsia remained significant among all women (risk ratio, 1.77; 95% confidence interval, 1.25-2.52) and nulliparous women specifically (risk ratio, 1.89; 95% confidence interval, 1.17-3.05). There was a trend but no statistical significance among parous women (risk ratio, 1.64; 95% confidence interval, 0.99-2.73). The risk ratio for preterm birth for all women diagnosed with COVID-19 and preeclampsia was 4.05 (95% confidence interval, 2.99-5.49) and 6.26 (95% confidence interval, 4.35-9.00) for nulliparous women. Compared with women with neither condition diagnosed, the composite adverse perinatal outcome showed a stepwise increase in the risk ratio for COVID-19 without preeclampsia, preeclampsia without COVID-19, and COVID-19 with preeclampsia (risk ratio, 2.16; 95% confidence interval, 1.63-2.86; risk ratio, 2.53; 95% confidence interval, 1.44-4.45; and risk ratio, 2.84; 95% confidence interval, 1.67-4.82, respectively). Similar findings were found for the composite adverse maternal outcome with risk ratios of 1.76 (95% confidence interval, 1.32-2.35), 2.07 (95% confidence interval, 1.20-3.57), and 2.77 (95% confidence interval, 1.66-4.63). The association between COVID-19 and gestational hypertension and the direction of the effects on preterm birth and adverse perinatal and maternal outcomes, were similar to preeclampsia, but confined to nulliparous women with lower risk ratios. CONCLUSION: COVID-19 during pregnancy is strongly associated with preeclampsia, especially among nulliparous women. This association is independent of any risk factors and preexisting conditions. COVID-19 severity does not seem to be a factor in this association. Both conditions are associated independently of and in an additive fashion with preterm birth, severe perinatal morbidity and mortality, and adverse maternal outcomes. Women with preeclampsia should be considered a particularly vulnerable group with regard to the risks posed by COVID-19

    A task-based assessment of parental occupational exposure to pesticides and childhood acute lymphoblastic leukemia

    No full text
    [[abstract]]OBJECTIVES: Associations between parental occupational pesticide exposure and childhood acute lymphoblastic leukemia (ALL) vary across studies, likely due to different exposure assessment methodologies. METHODS: We assessed parental occupational pesticide exposure from the year before pregnancy to the child's third year of life for 669 children diagnosed with ALL and 1021 controls. We conducted expert rating using task-based job modules (JM) to estimate exposure to pesticides among farmer workers, gardeners, agricultural packers, and pesticide applicators. We compared this method to (1) partial JM using job titles and a brief description, but without completing the task-based questionnaire, and (2) job exposure matrix (JEM) linking job titles to the International Standard Classifications of Occupation Codes. We used unconditional logistic regression to calculate odds ratios (OR) and 95% confidence intervals (95% CI) for ALL cancer risk and pesticide exposure adjusting for child's sex, age, race/ethnicity and household income. RESULTS: Compared to complete JMs, partial JMs and JEM led to 3.1% and 9.4% of parents with pesticide exposure misclassified, respectively. Misclassification was similar in cases and controls. Using complete JMs, we observed an increased risk of ALL for paternal occupational exposure to any pesticides (OR=1.7; 95% CI=1.2, 2.5), with higher risks reported for pesticides to treat nut crops (OR=4.5; 95% CI=0.9, 23.0), and for children diagnosed before five years of age (OR=2.3; 95% CI: 1.3, 4.1). Exposure misclassification from JEM attenuated these associations by about 57%. Maternal occupational pesticide exposure before and after birth was not associated with ALL. CONCLUSIONS: The risk of ALL was elevated in young children with paternal occupational pesticide exposure during the perinatal period, using more detailed occupational information for exposure classification

    Determinants of manganese levels in house dust samples from the CHAMACOS cohort.

    No full text
    IntroductionManganese (Mn) is an essential nutrient, but at high exposure levels Mn is a neurotoxicant. The fungicides maneb and mancozeb are approximately 21% Mn by weight and more than 150,000 kg are applied each year to crops in the Salinas Valley, California. It is not clear, however, whether agricultural use of these fungicides increases Mn levels in homes.Materials and methodsWe collected house dust samples from 378 residences enrolled in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study with a second sample collected approximately nine months later from 90 of the residences. House dust samples were analyzed for Mn using inductively coupled plasma optical emission spectroscopy. Information from interviews, home inspections, and pesticide use reports was used to identify potential predictors of Mn dust concentrations and loadings.ResultsMn was detectable in all dust samples. The median Mn concentration was 171 μg/g and median Mn loading was 1,910 μg/m(2) at first visit. In multivariable models, Mn dust concentrations and loadings increased with the number of farmworkers in the home and the amount of agricultural Mn fungicides applied within three kilometers of the residence during the month prior to dust sample collection. Dust concentrations of Mn and other metals (lead, cadmium and chromium) were higher in residences located in the southern Salinas Valley compared those located in other areas of the Salinas Valley. Dust loadings of Mn and other metals were also higher in residences located on Antioch Loam soil than other soil types, and in homes with poor or average housekeeping practices.ConclusionsAgricultural use of Mn containing fungicides was associated with Mn dust concentrations and loadings in nearby residences and farmworker homes. Housekeeping practices and soil type at residence were also important factors related to dust metal concentrations and loadings
    corecore