72 research outputs found

    An augmented Lagrangian method for image reconstruction with multiple features

    Get PDF
    We present an Augmented Lagrangian Method (ALM) for solving image reconstruction problems with a cost function consisting of multiple regularization functions with a data fidelity constraint. The presented technique is used to solve inverse problems related to image reconstruction, including compressed sensing formulations. Our contributions include an improvement for reducing the number of computations required by an existing ALM method, an approach for obtaining the proximal mapping associated with p-norm based regularizers, and lastly a particular ALM for the constrained image reconstruction problem with a hybrid cost function including a weighted sum of the p-norm and the total variation of the image. We present examples from Synthetic Aperture Radar imaging and Computed Tomography

    An augmented Lagrangian method for autofocused compressed SAR imaging

    Get PDF
    We present an autofocus algorithm for Compressed SAR Imaging. The technique estimates and corrects for 1-D phase errors in the phase history domain, based on prior knowledge that the reflectivity field is sparse, as in the case of strong scatterers against a weakly-scattering background. The algorithm relies on the Sparsity Driven Autofocus (SDA) method and Augmented Lagrangian Methods (ALM), particularly Alternating Directions Method of Multipliers (ADMM). In particular, we propose an ADMM-based algorithm that we call Autofocusing Iteratively Re-Weighted Augmented Lagrangian Method (AIRWALM) to solve a constrained formulation of the sparsity driven autofocus problem with an ℓp-norm, p ≤ 1 cost function. We then compare the performance of the proposed algorithm's performance to Phase Gradient Autofocus (PGA) and SDA [2] in terms of autofocusing capability, phase error correction, and computation time

    Intestinal Microbiota in Patients with Spinal Cord Injury

    Get PDF
    Human intestinal flora comprises thousands of bacterial species. Growth and composition of intestinal microbiota is dependent on various parameters, including immune mechanisms, dietary factors and intestinal motility. Patients with spinal cord injury (SCI) frequently display neurogenic bowel dysfunction due to the absence of central nervous system control over the gastrointestinal system. Considering the bowel dysfunction and altered colonic transit time in patients with SCI, we hypothesized the presence of a significant change in the composition of their gut microbiome. The objective of this study was to characterize the gut microbiota in adult SCI patients with different types of bowel dysfunction. We tested our hypothesis on 30 SCI patients (15 upper motor neuron [UMN] bowel syndrome, 15 lower motor neuron [LMN] bowel syndrome) and 10 healthy controls using the 16S rRNA sequencing. Gut microbial patterns were sampled from feces. Independent of study groups, gut microbiota of the participants were dominated by Blautia, Bifidobacterium, Faecalibacterium and Ruminococcus. When we compared all study groups, Roseburia, Pseudobutyrivibrio, Dialister, Marvinbryantia and Megamonas appeared as the genera that were statistically different between groups. In comparison to the healthy group, total bacterial counts of Pseudobutyrivibrio, Dialister and Megamonas genera were significantly lower in UMN bowel dysfunction group. The total bacterial count of Marvinbryantia genus was significantly lower in UMN bowel dysfunction group when compared to the LMN group. Total bacterial counts of Roseburia, Pseudobutyrivibrio and Megamonas genera were significantly lower in LMN bowel dysfunction group when compared to healthy groups. Our results demonstrate for the first time that butyrate-producing members are specifically reduced in SCI patients when compared to healthy subjects. The results of this study would be of interest since to our knowledge, microbiome-associated studies targeting SCI patients are non-existent and the results might help explain possible implications of gut microbiome in SCI

    Statistically segregated k-space sampling for accelerating multiple-acquisition MRI

    Get PDF
    A central limitation of multiple-acquisition magnetic resonance imaging (MRI) is the degradation in scan efficiency as the number of distinct datasets grows. Sparse recovery techniques can alleviate this limitation via randomly undersampled acquisitions. A frequent sampling strategy is to prescribe for each acquisition a different random pattern drawn from a common sampling density. However, naive random patterns often contain gaps or clusters across the acquisition dimension that in turn can degrade reconstruction quality or reduce scan efficiency. To address this problem, a statistically-segregated sampling method is proposed for multiple-acquisition MRI. This method generates multiple patterns sequentially, while adaptively modifying the sampling density to minimize k-space overlap across patterns. As a result, it improves incoherence across acquisitions while still maintaining similar sampling density across the radial dimension of k-space. Comprehensive simulations and in vivo results are presented for phase-cycled balanced steady-state free precession and multi-echo T2-weighted imaging. Segregated sampling achieves significantly improved quality in both Fourier and compressedsensing reconstructions of multiple-acquisition datasets

    Secrecy Outage Capacity of Fading Channels

    Full text link

    Assessing population diversity in phase III trials of cancer drugs supporting Food and Drug Administration approval in solid tumors

    Get PDF
    Our study aimed to assess inequities in the clinical trial participation for the selected patient groups. We searched the Food and Drug Administration (FDA) database and extracted phase-III clinical trial data from MEDLINE for each approved drug by the FDA between January 1, 2006, and June 30, 2020. We analyzed the inclusion/exclusion criteria, participation according to gender, ethnic group, performance score, the positivity of HBV and HCV, and HIV, having comorbidities and brain metastasis. We compared the findings with that of the general population by retrieving data from the Surveillance, Epidemiology and End Results (SEER) database. We identified 142 phase III pivotal oncology trials that enrolled 105 397 patients. The proportion of female patients in trials was lower than their relative prevalence in the general population from SEER region (36% vs 49.6%, P < .001). The rates of black patients included were lower than their relative prevalence from SEER region (2.1% vs 9.8%, P < .001). 1.3% and 0.8% of patients had HBV and HCV infections, respectively. The patients' numbers with organ dysfunction were not established due to insufficient data from clinical trials. 1.6% of all patients had controlled brain metastasis. Black patients, women and patients with brain metastasis or with HBV and HCV were underrepresented. Our study underscores the importance of expanding the inclusion/exclusion criteria of pivotal oncology trials to be more representative of patients seen in clinical practice
    corecore