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Abstract—We present an autofocus algorithm for Compressed
SAR Imaging. The technique estimates and corrects for 1-D phase
errors in the phase history domain, based on prior knowledge that
the reflectivity field is sparse, as in the case of strong scatterers
against a weakly-scattering background. The algorithm relies on
the Sparsity Driven Autofocus (SDA) method and Augmented
Lagrangian Methods (ALM), particularly Alternating Directions
Method of Multipliers (ADMM). In particular, we propose an
ADMM-based algorithm that we call Autofocusing Iteratively Re-
Weighted Augmented Lagrangian Method (AIRWALM) to solve a
constrained formulation of the sparsity driven autofocus problem
with an /,-norm, p < 1 cost function. We then compare the
performance of the proposed algorithm’s performance to Phase
Gradient Autofocus (PGA) and SDA [2] in terms of autofocusing
capability, phase error correction, and computation time.

I. INTRODUCTION

In this paper, we consider the autofocused compressed
SAR imaging problem, with 1-D phase errors in the azimuth
direction. We model the problem as one of non-convex opti-
mization, and solve it using advanced optimization techniques.

While forming SAR images, it is necessary to correct the
errors originating from navigation errors or non-ideal propaga-
tion media [1]. Autofocus algorithms are used to estimate and
correct these errors, typically following the formation of SAR
images. However, in compressive SAR imaging, conventional
algorithms do not work well [1]. A Sparsity Driven Autofocus
approach [2] has been shown to work well for imaging prob-
lems where full data are available within the bandwidth and/or
aperture. Nonetheless, it remains a challenge to solve the
associated optimization problems in computationally efficient
ways for practical use. Our main motivation here is to estimate
and correct 1-D phase errors in compressed sensing SAR
imaging with high computational efficiency, while forming
autofocused SAR images with sparsity priors.

Alternating Direction Method of Multipliers (ADMM) has
been successfully applied to signal and image recovery prob-
lems [3], [4]. ADMM provides a divide-and-conquer approach
by splitting unconstrained multi-objective convex optimization
problems, augmenting the Lagrangian with a norm-squared
error term, and using a nonlinear block Gauss-Seidel approach
on the resultant terms in the optimization problem. The re-
sulting algorithm exhibits guaranteed convergence under mild
conditions [3].

We propose a constrained approach based on ¢,-norm
minimization involving phase errors in the problem set up as
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variables as well. The method optimizes over the reflectivities
and phase errors jointly, and is based on the Iteratively Re-
Weighted Augmented Lagrangian Method (IRWALM) [7], [8]
and Sparsity Driven Autofocus (SDA) [2]. For simplicity, we
only consider 1-D phase errors, while the method can be
extended to other types of phase errors [2], as well. The
proposed algorithm is compared to Phase Gradient Autofocus
(PGA) aanM SDA. The results on raw SAR data collected with
SARPER = -airborne SAR system developed by ASELSAN
[9]- show the effectiveness of the proposed algorithm. Our
primary contribution is the development of a computationally
efficient ADMM-based algorithm for sparsity-driven autofo-
cused SAR imaging.

II. BACKGROUND
A. SAR Observation Model

The SAR observation model can be considered linear in
relating the image pixels to the data vector. Let us denote the
data vector by y € CM, the vector containing image pixels by
x € CV, the observation matrix by B(¢) € CM*N with M <
N, and the unknown 1-D phase error term by ¢ € 1", where n
denotes the number of samples in the azimuth direction. In this
paper, we assume that the data vector lies in the phase history
domain, and B(¢) denotes a 2-D Fourier Transformation with
phase correction and consecutive masking. Then, B(¢) can be
decomposed into three elements as:

B(¢) = MP,U, M

where M € RM*V is the masking matrix, Py, € CV*V js
the diagonal phase error matrix, and U € CV*V is the 2-D
Fourier matrix. Then, the measurement vector y is given by
the model:

y =B(¢)x +n. )

n € CM denotes the additive noise vector, and P, is the
matrix corresponding to multiplication by the phase-error term
for each azimuth index 1.

While we refer to the corresponding operators using matrix
notation, none of the matrices in Eq. (1) are formed explicitly
in the implementation. Rather, the transformations are carried
out through element-wise multiplications for M and Py, and
FFTs for U.
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Algorithm 1: IRWALM
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11. until some stopping criterion is satisfied.

B. IRWALM

In the context of compressive sensing SAR, where the re-
flectivity field can be assumed sparse [5], the image formation
problem without taking any phase errors into account can be
cast as:

minixmize |Bx — ylI3 + Allx]|, . 3

with p = 1, where B = MU. Other choices with p < 1 yield
encouraging results in terms of sparsity enhancement [5]. An
alternative form of (3) is the constrained problem:

minimize x|
X

. 4
IBx—ylls < e @

subject to

Iterative re-weighting has been used in the solution of
optimization problems with non-convex objective functions
comprising of p-norms [6]. The IRWALM algorithm [7] takes
advantage of the computational efficiency and the robustness of
ADMM [4], and provides a method to solve the optimization
problem (4). It does so by plugging the approximation of
Proximal Mapping Function ¥ of the £,-norm, which involves
iteratively re-weighting the output of the soft thresholding
function [7], [8]. IRWALM is given in Algorithm 1.

Computationally efficient techniques to solve the inverse
problem in step 4 of IRWALM have been previously proposed
in the context of Augmented Lagrangian Methods (ALMs)
[3]. B is a small regularization term added in step 5 of
IRWALM to avoid numerically unstable divisions. ¥ in step
7 of IRWALM is the Moreau proximal mapping function for
the indicator function tg(. 1) (s) corresponding to the data
fidelity constraint and given below:

ifse S

_ )0
LS(S) - { —+00, if s ¢ S > (5)
where E(e,1,y) is the hypersphere defined by:
E(e,Ly)={xeC":|Bx—y|> <¢}. (6)
Then, ¥ is given by:
S, ifls—yl2<e
Yina (8) = { yree itfs—yla>e - P

C. Sparsity Driven Autofocus (SDA)

The problem of 1-D autofocusing has to do with the
estimation of the phase error vector ¢ defined in Section IL.A.
Sparsity-driven approaches to the autofocus problem in the

Algorithm 2: SDA [2]
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literature have provided encouraging results [2], [10], [11].
Sparsity-Driven Autofocus (SDA) algorithm corrects phase er-
rors and enhances the resolution of SAR images by exploiting
the sparsity in the image domain [2]. The algorithm addresses
problems with phase errors that are (i) one-dimensional, (ii)
2-D separable, (iii) 2-D non-separable. The phase-error depen-
dence is denoted with ¢ in the formulation [2]:

arg min [|ly — B(¢)x|3 + Allx[|x ®
In this paper, we only consider 1-D phase errors in azimuth
direction. The algorithm divides the problem to two, and

solves two sub-problems separately in an alternating fashion,
iteratively. Let us define the function J(f, ¢) as:

J(f.0) = lly = B(OE[I3 + A[£]lx ©)

Then, at each step, SDA minimizes each variable consecu-
tively, and updates the observation matrix. The SDA approach
is given in Algorithm 2, where step 5 performs the updates:
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where B,, and g, denote the rows with indices m + kn of

B, and g,,, respectively and Eq. (11) performs the update:

P¢(’“+1) [7’3 Z} = P¢(k> [Zv Z] - €Xp (j¢(k+1) [Z mod n])v
for all 7. (12)

in order to iteratively estimate the phase error ¢.

III. AN AUTOFOCUSED COMPRESSED SAR IMAGING
METHOD

A. AIRWALM

The SDA algorithm solves sub-problems regarding the
minimization of the regularized data fidelity error and the
estimation of the phase error separately, in an alternating
fashion within an iterative framework. A different approach to
the problem at hand is to solve the following problem, instead
of solving the unconstrained problem in step 3 of SDA:

minimize |Ix]1
x,¢

o 13)
subject to || B(¢)x —yll2 <€

For SAR imaging problems, it is somewhat easier to select
€, the data fidelity error bound in Eq. (13), than choosing A,



the regularization parameter in Eq. (8). Moreover, the change
of the minimization problem at step 3 of SDA, does not affect
the solution at step 4, since one can select A such that both
algorithms reach a solution with the same 1-norm and data
fidelity error in the unconstrained form as the constrained for-
mulation with a corresponding e value. Therefore, we assume
that the constrained algorithm chooses such a A to set the error
bound to e. This justifies that step 4 of SDA has equivalent
solutions in constrained and unconstrained forms.

We take our approach one step further and instead of (13),
we solve:

minimize (B}
X

x, (14)
subject to  ||B(¢)x —yll2 <€

Since the use of p-norms further enhances sparsity, this change

is expected to result in a more accurate estimation for the phase
error.

Also, since the modification involves the regularization
term in the unconstrained form, and does not depend on ¢, step
4 of SDA remains the same. We only change the sub-problem
in step 3 of SDA, and use a variation of ADMM, IRWALM for
the solution and reach a computationally efficient algorithm.
The stopping criterion for the inner loop can be chosen as
“until £ = 1” in order to stop the inner loop immediately after
running once. Even then, the algorithm provides an estimate
of the phase error. To reach a more accurate result, instead
of running the inner loop only once, we place the phase
estimation step inside IRWALM, keeping vectors zj,d; and
Xy, intact. We run the algorithm with the initial setting:

zél) = Z§1)7Z(()2) = z§2), (15)
v(()l) = v§1)7v(()2) = VEQ), (16)
Xp = X1. (17)

This results in faster convergence, as well as a more accu-
rate phase error estimation. The resulting approach, Autofocus-
ing Iteratively Re-Weighted Augmented Lagrangian Method
(AIRWALM), is presented in Algorithm 3.

Algorithm 3: Autofocusing Iteratively Re-Weighted Augmented
Lagrangian Method (AIRWALM)
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13. until some stopping criterion is satisfied.

10. QASYV:FD])(m) = —arctan

From an ADMM point of view, we update the observation
matrix at the end of each iteration. Although the known

guarantees for convergence of ADMM are not valid in this
case, in practice we have observed a consistent behavior of
the algorithm with non-convex functions.

The algorithm requires 2 FFTs per iteration, which can be
calculated at the cost of O(Nlog(N)). All other operations
are element-wise operations and have a cost of O(N).

IV. RESULTS

We implemented the proposed algorithm in MATLAB. The
experiments were conducted on a workstation with Intel Core
15-3470 CPU and 8 GB of RAM. All values are initialized to
zero except for zO2 , which is initialized to y. p is chosen as
300 for AIRWALM.

First, we experimented on the Slicy data, which are from
a public SAR data set, provided by U.S Air Force Research
Laboratory (AFRL) [12]. The scene reconstructed using the
conventional polar format algorithm from full-aperture, full-
bandwidth data without phase errors is shown in Fig. 1.a.
For our experiments, we consider a scenario in which only
39% of that data, sampled through a random mask shown
in Fig. 1.b, are available. Other, more structured sampling
schemes can of course be considered as well. We also add an
artificial phase error to compressively sensed data. The images
obtained by conventional imaging and after the application of
the PGA algorithm are shown in Fig. 1.c and 1.d, respectively.
Although PGA achieves some degree of focusing, it cannot
provide accurate localization of all scatterers in this limited-
data scenario.

For Algorithm 3, the stopping criterion for the algorithm
is chosen as “until £ = 300”. Figures 1.e—f show the resulting
images for AIRWALM for p = 0.3 and p = 1.0. The proposed
approach results in better and more accurate localization of
all dominant scatterers. However, we also observed that the
phase error estimation step impacts the image reconstruction
performance significantly. The phase error estimation error is
shown in Fig 2. While a constant offset in the phase error
estimate has no impact on the magnitudes of the image pixels,
a linear offset causes a circular shifting of the image. Since the
sparsity of the image does not change in either case, the model
we currently present is indifferent to constant and linear phase
errors, which can be safely ignored from an imaging point of
view [13].

As shown in Fig. 2, PGA can not correctly estimate the
phase error while AIRWALM reaches a nearly constant offset,
with little effect on the magnitude image. To quantify the
phase error estimation performance, we fit a line to each of
these results with minimum square error, then check the Root
Mean Square (RMS) value of fitting error. The RMS values
for different values of p and RMS value for PGA can be
found in Table I. To analyze the convergence speed versus
the value of parameter p, the RMS values at each iteration are
plotted in Fig. 3. One can observe from Fig. 3 that smaller
p allows quicker convergence with slightly greater RMS error
on average.

To further analyse the performance of the proposed method,
we validated our approach using the raw data collected
using SARPER" [9] —airborne SAR system developed by
ASELSAN. The reference image with full-aperture data which



,-“'. e

1] ""‘!-' 5 '|I‘ b .-
-"'_ ._ ? -!Eg.ml 3
T T o

Fig. 1. a. Reference slicy image (upper-left), b. Available samples in 2-D
Fourier space (39% of all points) (upper-right), c. Conventionally reconstructed
image (middle-left), d. Conventionally reconstructed image after using PGA
(middle-right), e. Image reconstructed with AIRWALM ¢y 3 (lower-left), f.
Image reconstructed with AIRWALM /¢; (lower-right)

includes phase errors is shown in Fig 4.a. For our experi-
ments, we again consider a limited-data scenario. The available
samples in the 2-D Fourier space are shown in Fig 4.b.
The conventional reconstruction, and the reconstructed image
with PGA are shown in Figs. 4.c—d, respectively. The image
reconstruction performances of PGA and conventional imag-
ing do not appear to be satisfactory. Figs. 4.e—f show the
reconstructions with the proposed AIRWALM with p = 0.3
and p = 1, respectively, after 600 iterations. The phase error
estimates are shown in Fig. 5. Since a ground-truth is not
available for the phase error, we draw comparisons to the result
of PGA run with full data, as a reference. In this limited-data
scenario, we observe that the phase error estimates produced
by AIRWALM are better than those of PGA, in terms of their
similarity to the reference phase error estimates obtained by
PGA from full data.

Dataset 60_3 50_5 60_8 41
Slicy | 0.0281 0.0272 0.0263 0.0258 s

PGA
0.1233

TABLE 1. RMS VALUES (RADIANS) FOR PGA AND AIRWALM FOR
SLICY DATA (128X 128) WHERE 39% OF THE DATA ARE ASSUMED TO BE
AVAILABLE
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Fig. 2. Phase error estimation errors of AIRWALM and PGA.
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Fig. 3. RMS value of phase error estimation errors versus iteration count of
AIRWALM.

The comparison of AIRWALM to SDA regarding compu-
tational performance is given in Table II. Both algorithms are
run without reduction in data. As it can be seen from the table,
AIRWALM results in a faster solution in each of the studied
cases.

Dataset o3 los lo.8 12 SDA

Slicy 074s 089s 124s 105s 147s

SARPER" | 147s 163s 20ls 170s 345s
TABLE II. COMPUTATION TIMES (SECONDS) FOR SDA AND

AIRWALM FOR SLICY DATA (128x128) AND RAW SARPER " DATA
(128x128), WHERE FULL DATA ARE ASSUMED TO BE AVAILABLE

V. DISCUSSION

In this paper, we presented a computationally efficient
method based on ADMM for the problem of autofocused
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Fig. 4. a. Image reconstruction from full-bandwidth / full-aperture data
(upper-left), b. Available samples in 2-D Fourier space (39% of all points)
(upper-right), c. Conventionally reconstructed image (middle-left), d. Con-
ventionally reconstructed image after using PGA (middle-right), e. Image
reconstructed with AIRWALM /g 3 (lower-left), f. Image reconstructed with
AIRWALM /¢; (lower-right).

Phase Error Estimations for AIRWALM
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Fig. 5. Phase error estimations by AIRWALM and PGA with 39% and PGA
with full data.

compressed SAR imaging. The proposed method (AIRWALM)
exhibits better autofocusing capability, improved contrast, and
more accurate estimation of the phase errors, especially in
limited data scenarios, as compared to the well-known PGA
approach. As compared to SDA, the proposed approach offers
reduced computation time and a slightly easier choice of the
hyperparameter involved in the problem.

While what we propose here is a joint imaging and phase
error estimation approach, one could also use our approach
just for accurate estimation of phase errors. In particular, given
the forward model updated with phase errors estimated by our
method, one could then use any image formation approach
exploiting the phase error correction achieved by our method.
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