28 research outputs found

    Intestinal Microbiota in Patients with Spinal Cord Injury

    Get PDF
    Human intestinal flora comprises thousands of bacterial species. Growth and composition of intestinal microbiota is dependent on various parameters, including immune mechanisms, dietary factors and intestinal motility. Patients with spinal cord injury (SCI) frequently display neurogenic bowel dysfunction due to the absence of central nervous system control over the gastrointestinal system. Considering the bowel dysfunction and altered colonic transit time in patients with SCI, we hypothesized the presence of a significant change in the composition of their gut microbiome. The objective of this study was to characterize the gut microbiota in adult SCI patients with different types of bowel dysfunction. We tested our hypothesis on 30 SCI patients (15 upper motor neuron [UMN] bowel syndrome, 15 lower motor neuron [LMN] bowel syndrome) and 10 healthy controls using the 16S rRNA sequencing. Gut microbial patterns were sampled from feces. Independent of study groups, gut microbiota of the participants were dominated by Blautia, Bifidobacterium, Faecalibacterium and Ruminococcus. When we compared all study groups, Roseburia, Pseudobutyrivibrio, Dialister, Marvinbryantia and Megamonas appeared as the genera that were statistically different between groups. In comparison to the healthy group, total bacterial counts of Pseudobutyrivibrio, Dialister and Megamonas genera were significantly lower in UMN bowel dysfunction group. The total bacterial count of Marvinbryantia genus was significantly lower in UMN bowel dysfunction group when compared to the LMN group. Total bacterial counts of Roseburia, Pseudobutyrivibrio and Megamonas genera were significantly lower in LMN bowel dysfunction group when compared to healthy groups. Our results demonstrate for the first time that butyrate-producing members are specifically reduced in SCI patients when compared to healthy subjects. The results of this study would be of interest since to our knowledge, microbiome-associated studies targeting SCI patients are non-existent and the results might help explain possible implications of gut microbiome in SCI

    Regulator of G-protein signaling 1 critically supports CD8+ TRM cell-mediated intestinal immunity.

    Get PDF
    Members of the Regulator of G-protein signaling (Rgs) family regulate the extent and timing of G protein signaling by increasing the GTPase activity of Gα protein subunits. The Rgs family member Rgs1 is one of the most up-regulated genes in tissue-resident memory (TRM) T cells when compared to their circulating T cell counterparts. Functionally, Rgs1 preferentially deactivates Gαq, and Gαi protein subunits and can therefore also attenuate chemokine receptor-mediated immune cell trafficking. The impact of Rgs1 expression on tissue-resident T cell generation, their maintenance, and the immunosurveillance of barrier tissues, however, is only incompletely understood. Here we report that Rgs1 expression is readily induced in naïve OT-I T cells in vivo following intestinal infection with Listeria monocytogenes-OVA. In bone marrow chimeras, Rgs1 -/- and Rgs1 +/+ T cells were generally present in comparable frequencies in distinct T cell subsets of the intestinal mucosa, mesenteric lymph nodes, and spleen. After intestinal infection with Listeria monocytogenes-OVA, however, OT-I Rgs1 +/+ T cells outnumbered the co-transferred OT-I Rgs1- /- T cells in the small intestinal mucosa already early after infection. The underrepresentation of the OT-I Rgs1 -/- T cells persisted to become even more pronounced during the memory phase (d30 post-infection). Remarkably, upon intestinal reinfection, mice with intestinal OT-I Rgs1 +/+ TRM cells were able to prevent the systemic dissemination of the pathogen more efficiently than those with OT-I Rgs1 -/- TRM cells. While the underlying mechanisms are not fully elucidated yet, these data thus identify Rgs1 as a critical regulator for the generation and maintenance of tissue-resident CD8+ T cells as a prerequisite for efficient local immunosurveillance in barrier tissues in case of reinfections with potential pathogens

    Tissue-Resident T Cells in Chronic Relapsing-Remitting Intestinal Disorders.

    Get PDF
    Tissue-resident memory T (TRM) cells critically contribute to the rapid immunoprotection and efficient immunosurveillance against pathogens, particularly in barrier tissues, but also during anti-tumor responses. However, the involvement of TRM cells also in the induction and exacerbation of immunopathologies, notably in chronically relapsing auto-inflammatory disorders, is becoming increasingly recognized as a critical factor. Thus, TRM cells may also represent an attractive target in the management of chronic (auto-) inflammatory disorders, including multiple sclerosis, rheumatoid arthritis, celiac disease and inflammatory bowel diseases. In this review, we focus on current concepts of TRM cell biology, particularly in the intestine, and discuss recent findings on their involvement in chronic relapsing-remitting inflammatory disorders. Potential therapeutic strategies to interfere with these TRM cell-mediated immunopathologies are discussed

    Novel potential inhibitors of complement system and their roles in complement regulation and beyond

    No full text
    The complement system resembles a double-edged sword since its activation can either benefit or harm the host. Thus, regulation of this system is of utmost importance and performed by several circulating and membrane-bound complement inhibitors. The pool of well-established regulators has recently been enriched with proteins that either share structural homology to known complement inhibitors such as Sushi domain-containing (SUSD) protein family and Human CUB and Sushi multiple domains (CSMD) families or extracellular matrix (ECM) macromolecules that interact with and modulate complement activity. In this review, we summarize the current knowledge about newly discovered complement inhibitors and discuss their implications in complement regulation, as well as in processes beyond complement regulation such cancer development. Understanding the behavior of these proteins will introduce new mechanisms of complement regulation and may provide new avenues in the development of novel therapies

    Gut microbiome composition profiles that differed between UMN group (n = 15), LMN group (n = 15), and control group (n = 10).

    No full text
    <p>The values represent bacterial DNA counts in gut microbiome. (A) Total bacterial counts; (B) Pseudobutyrivibrio; (C) Dialister; (D) Megamonas; (E) Marvinbryantia; (F) Roseburia. The horizontal lines in the boxplots show median values and the whiskers show the 5–95 percentiles. Values below and above whiskers are represented with dots. UMN: Upper motor neuron; LMN: Lower motor neuron; C:Control; *p<0.05.</p

    Impaired toll like receptor-7 and 9 induced immune activation in chronic spinal cord injured patients contributes to immune dysfunction

    Get PDF
    <div><p>Reduced immune activation or immunosuppression is seen in patients withneurological diseases. Urinary and respiratory infections mainly manifested as septicemia and pneumonia are the most frequent complications following spinal cord injuries and they account for the majority of deaths. The underlying reason of these losses is believed to arise due to impaired immune responses to pathogens. Here, we hypothesized that susceptibility to infections of chronic spinal cord injured (SCI) patients might be due to impairment in recognition of pathogen associated molecular patterns and subsequently declining innate and adaptive immune responses that lead to immune dysfunction. We tested our hypothesis on healthy and chronic SCI patients with a level of injury above T-6. Donor PBMCs were isolated and stimulated with different toll like receptor ligands and T-cell inducers aiming to investigate whether chronic SCI patients display differential immune activation to multiple innate and adaptive immune cell stimulants. We demonstrate that SCI patients' B-cell and plasmacytoid dendritic cells retain their functionality in response to TLR7 and TLR9 ligand stimulation as they secreted similar levels of IL6 and IFNα. The immune dysfunction is not probably due to impaired T-cell function, since neither CD4<sup>+</sup> T-cell dependent IFNγ producing cell number nor IL10 producing regulatory T-cells resulted different outcomes in response to PMA-Ionomycin and PHA-LPS stimulation, respectively. We showed that TLR7 dependent IFNγ and IP10 levels and TLR9 mediated APC function reduced substantially in SCI patients compared to healthy subjects. More importantly, IP10 producing monocytes were significantly fewer compared to healthy subjects in response to TLR7 and TLR9 stimulation of SCI PBMCs. When taken together this work implicated that these defects could contribute to persistent complications due to increased susceptibility to infections of chronic SCI patients.</p></div

    SCI monocytes are defective in IP10 production in response to D35 stimulation.

    No full text
    <p>PBMCs (2x10<sup>5</sup>/200μl/well) were incubated with D35 (3μM) for 24h. (A) IP10 secretion levels of healthy (n = 5) and SCI (n = 10) PBMC supernatants. PBMCs (10<sup>6</sup>/ml) were stimulated with D35 (3μM) for 20h, at 12h Brefeldin A (10μl/ml) was added. (B) Percent IP10 producing cells following intracellular cytokine staining of healthy (n = 7) and SCI (n = 7) PBMCs, (C) Representative dot plots showing IP10 producing monocytes. 30000 cells were acquired during the analysis. Mann-Whitney test was used to test significance between healthy and SCI responses to D35. Two-way ANOVA with Bonferroni Correction was used to test the significance when compared to medium alone group. (*, p≤0.05; **, p≤0.01; ****, p≤0.0001).</p
    corecore