380 research outputs found
A lattice gas model of II-VI(001) semiconductor surfaces
We introduce an anisotropic two-dimensional lattice gas model of metal
terminated II-IV(001) seminconductor surfaces. Important properties of this
class of materials are represented by effective NN and NNN interactions, which
result in the competition of two vacancy structures on the surface. We
demonstrate that the experimentally observed c(2x2)-(2x1) transition of the
CdTe(001) surface can be understood as a phase transition in thermal
equilbrium. The model is studied by means of transfer matrix and Monte Carlo
techniques. The analysis shows that the small energy difference of the
competing reconstructions determines to a large extent the nature of the
different phases. Possible implications for further experimental research are
discussed.Comment: 7 pages, 2 figure
ZnSe/GaAs(001) heterostructures with defected interfaces: structural, thermodynamic and electronic properties
We have performed accurate \emph{ab--initio} pseudopotential calculations for
the structural and electronic properties of ZnSe/GaAs(001) heterostructures
with interface configurations accounting for charge neutrality prescriptions.
Beside the simplest configurations with atomic interdiffusion we consider also
some configurations characterized by As depletion and cation vacancies,
motivated by the recent successfull growth of ZnSe/GaAs pseudomorphic
structures with minimum stacking fault density characterized by the presence of
a defected (Zn,Ga)Se alloy in the interface region. We find that--under
particular thermodynamic conditions--some defected configurations are favoured
with respect to undefected ones with simple anion or cation mixing, and that
the calculated band offsets for some defected structures are compatible with
those measured. Although it is not possible to extract indications about the
precise interface composition and vacancy concentration, our results support
the experimental indication of (Zn,Ga)Se defected compounds in high-quality
ZnSe/GaAs(001) heterojunctions with low native stacking fault density. The
range of measured band offset suggests that different atoms at interfaces
rearrange, with possible presence of vacancies, in such a way that not only
local charges but also ionic dipoles are vanishing.Comment: 26 pages. 5 figures, revised version, in press (Physical Review B
Micro-spectroscopy on silicon wafers and solar cells
Micro-Raman (μRS) and micro-photoluminescence spectroscopy (μPLS) are demonstrated as valuable characterization techniques for fundamental research on silicon as well as for technological issues in the photovoltaic production. We measure the quantitative carrier recombination lifetime and the doping density with submicron resolution by μPLS and μRS. μPLS utilizes the carrier diffusion from a point excitation source and μRS the hole density-dependent Fano resonances of the first order Raman peak. This is demonstrated on micro defects in multicrystalline silicon. In comparison with the stress measurement by μRS, these measurements reveal the influence of stress on the recombination activity of metal precipitates. This can be attributed to the strong stress dependence of the carrier mobility (piezoresistance) of silicon. With the aim of evaluating technological process steps, Fano resonances in μRS measurements are analyzed for the determination of the doping density and the carrier lifetime in selective emitters, laser fired doping structures, and back surface fields, while μPLS can show the micron-sized damage induced by the respective processes
Kinetic model of II-VI(001) semiconductor surfaces: Growth rates in atomic layer epitaxy
We present a zinc-blende lattice gas model of II-VI(001) surfaces, which is
investigated by means of Kinetic Monte Carlo (KMC) simulations. Anisotropic
effective interactions between surface metal atoms allow for the description
of, e.g., the sublimation of CdTe(001), including the reconstruction of
Cd-terminated surfaces and its dependence on the substrate temperature T. Our
model also includes Te-dimerization and the potential presence of excess Te in
a reservoir of weakly bound atoms at the surface. We study the self-regulation
of atomic layer epitaxy (ALE) and demonstrate how the interplay of the
reservoir occupation with the surface kinetics results in two different
regimes: at high T the growth rate is limited to 0.5 layers per ALE cycle,
whereas at low enough T each cycle adds a complete layer of CdTe. The
transition between the two regimes occurs at a characteristic temperature and
its dependence on external parameters is studied. Comparing the temperature
dependence of the ALE growth rate in our model with experimental results for
CdTe we find qualitative agreement.Comment: 9 pages (REVTeX), 8 figures (EPS). Content revised, references added,
typos correcte
Enhancement and suppression effects resulting from information structuring in sentences
Information structuring through the use of cleft sentences increases the processing efficiency of references to elements within the scope of focus. Furthermore, there is evidence that putting certain types of emphasis on individual words not only enhances their subsequent processing, but also protects these words from becoming suppressed in the wake of subsequent information, suggesting mechanisms of enhancement and suppression. In Experiment 1, we showed that clefted constructions facilitate the integration of subsequent sentences that make reference to elements within the scope of focus, and that they decrease the efficiency with reference to elements outside of the scope of focus. In Experiment 2, using an auditory text-change-detection paradigm, we showed that focus has similar effects on the strength of memory representations. These results add to the evidence for enhancement and suppression as mechanisms of sentence processing and clarify that the effects occur within sentences having a marked focus structure
Direct and indirect aboutness topics
We propose a definition of aboutness topicality that not only encompasses individual denoting DPs, but also indefinites. We concentrate on the interpretative effects of marking indefinites as topics: they either receive widest scope in their clause, or they are interpreted in the restrictor of an overt or covert Q-adverb. We show that in the first case they are direct aboutness topics insofar as they are the subject of a predication expressed by the comment, while in the second case they are indirect aboutness topics: they define the subject of a higher-order predication — namely the set of situations that the respective Q-adverb quantifies over
Recommended from our members
Can combining economizers with improved filtration save energy and protect equipment in data centers?
Economizer use in data centers is an energy efficiency strategy that could significantly limit electricity demand in this rapidly growing economic sector. Widespread economizer implementation, however, has been hindered by potential equipment reliability concerns associated with exposing information technology equipment to particulate matter of outdoor origin. This study explores the feasibility of using economizers in data centers to save energy while controlling particle concentrations with high-quality air filtration. Physical and chemical properties of indoor and outdoor particles were analyzed at an operating northern California data center equipped with an economizer under varying levels of air filtration efficiency. Results show that when improved filtration is used in combination with an economizer, the indoor/outdoor concentration ratios for most measured particle types were similar to levels when using conventional filtration without economizers. An energy analysis of the data center reveals that, even during the summer months, chiller savings from economizer use greatly outweigh any increase in fan power associated with improved filtration. These findings indicate that economizer use combined with improved filtration could reduce data center energy demand while providing a level of protection from particles of outdoor origin similar to that observed with conventional design
Recommended from our members
Measurements and Modeling of Environmental Tobacco Smoke Leakage From a Simulated Smoking Room
The purpose of this study is to quantify the effect ofvarious design and operating parameters on smoking room performance.Twenty-eight experiments were conducted in a simulated smoking room with a smoking machine and an automatic door opener. Measurements were made of air flows, pressures, temperatures, two particle-phase ETS tracers, two gas-phase ETS tracers, and sulfur hexafluoride. Quantification of leakage flows, the effect of these leaks on smoking room performance and non-smoker exposure, and the relative importance of each leakage mechanism are presented. The results indicate that the first priority for an effective smoking room is to depressurize it with respect to adjoining non-smoking areas. Another important ETS leakage mechanism is the pumping action of the smoking room door. Substituting a sliding door for a standard swing-type door reduced this source of ETS leakage significantly. Measured results correlated well with model predictions (R2 = 0.82-0.99)
Recommended from our members
Cigarette Smoke Toxins Deposited on Surfaces: Implications for Human Health
Cigarette smoking remains a significant health threat for smokers and nonsmokers alike. Secondhand smoke (SHS) is intrinsically more toxic than directly inhaled smoke. Recently, a new threat has been discovered – Thirdhand smoke (THS) – the accumulation of SHS on surfaces that ages with time, becoming progressively more toxic. THS is a potential health threat to children, spouses of smokers and workers in environments where smoking is or has been allowed. The goal of this study is to investigate the effects of THS on liver, lung, skin healing, and behavior, using an animal model exposed to THS under conditions that mimic exposure of humans. THS-exposed mice show alterations in multiple organ systems and excrete levels of NNAL (a tobacco-specific carcinogen biomarker) similar to those found in children exposed to SHS (and consequently to THS). In liver, THS leads to increased lipid levels and non-alcoholic fatty liver disease, a precursor to cirrhosis and cancer and a potential contributor to cardiovascular disease. In lung, THS stimulates excess collagen production and high levels of inflammatory cytokines, suggesting propensity for fibrosis with implications for inflammation-induced diseases such as chronic obstructive pulmonary disease and asthma. In wounded skin, healing in THS-exposed mice has many characteristics of the poor healing of surgical incisions observed in human smokers. Lastly, behavioral tests show that THS-exposed mice become hyperactive. The latter data, combined with emerging associated behavioral problems in children exposed to SHS/THS, suggest that, with prolonged exposure, they may be at significant risk for developing more severe neurological disorders. These results provide a basis for studies on the toxic effects of THS in humans and inform potential regulatory policies to prevent involuntary exposure to THS
- …