546 research outputs found

    Assessment of a Siloxane Poly(Urethane‐Urea) Elastomer Designed for Implantable Heart Valve Leaflets

    Get PDF
    Synthetic polymer leaflets in prosthetic cardiac valves hold the potential to reduce calcification and thrombus, while improving blood flow, durability, and device economics. A recently developed siloxane poly(urethane‐urea) (LifePolymer™, LP) exhibits properties essential for heart valve leaflets, including low dynamic modulus, high tensile strength, minimal creep, and excellent biostability. LP properties result from carefully designed “linked co‐macrodiol” chemistry that maximizes silicone content and virtual crosslinks between soft and hard phases. Characterization of multiple commercial batches demonstrates a robust synthesis process with minimal variation. Extensive ISO 10993‐based biocompatibility testing resulted in no observable toxicity or other adverse reactions. An ex vivo AV shunt thrombogenicity investigation revealed nearly undetectable levels of platelet attachment and thrombus formation on LP surfaces. Chronic ovine implantation of prototype heart valves with LP leaflets showed no differences in thrombogenicity or systemic tissue response when compared to a clinically standard tissue‐based valve. Toxicological risk assessment, based on extractables and leachables analysis of LP‐based heart valves, confirmed minimal toxicological risk. Lastly, 24‐week, strain‐accelerated in vivo LP biostability testing confirmed previous favorable in vitro biostability findings. These studies demonstrate that this newly developed elastomer exhibits ideal biomaterial properties for the flexible leaflets of a totally synthetic heart valve replacement

    Biodegradable Polymers in Bone Tissue Engineering

    Get PDF
    The use ofdegradable polymers in medicine largely started around the mid 20th century with their initial use as in vivo resorbing sutures. Thorough knowledge on this topic as been gained since then and the potential applications for these polymers were, and still are, rapidly expanding. After improving the properties of lactic acid-based polymers, these were no longer studied only from a scientific point of view, but also for their use in bone surgery in the 1990s. Unfortunately, after implanting these polymers, different foreign body reactions ranging from the presence of white blood cells to sterile sinuses with resorption of the original tissue were observed. This led to the misconception that degradable polymers would, in all cases, lead to inflammation and/or osteolysis at the implantation site. Nowadays, we have accumulated substantial knowledge on the issue of biocompatibility of biodegradable polymers and are able to tailor these polymers for specific applications and thereby strongly reduce the occurrence of adverse tissue reactions. However, the major issue of biofunctionality, when mechanical adaptation is taken into account, has hitherto been largely unrecognized. A thorough understanding of how to improve the biofunctionality, comprising biomechanical stability, but also visualization and sterilization of the material, together with the avoidance of fibrotic tissue formation and foreign body reactions, may greatly enhance the applicability and safety of degradable polymers in a wide area of tissue engineering applications. This review will address our current understanding of these biofunctionality factors, and will subsequently discuss the pitfalls remaining and potential solutions to solve these problems

    Boundedness, compactness and Schatten-class membership of weighted composition operators

    Full text link
    The boundedness and compactness of weighted composition operators on the Hardy space H2{\mathcal H}^2 of the unit disc is analysed. Particular reference is made to the case when the self-map of the disc is an inner function. Schatten-class membership is also considered; as a result, stronger forms of the two main results of a recent paper of Gunatillake are derived. Finally, weighted composition operators on weighted Bergman spaces A2α(D)\mathcal{A}^2 \alpha(\mathbb{D}) are considered, and the results of Harper and Smith, linking their properties to those of Carleson embeddings, are extended to this situation.Comment: 12 page

    Structure and blood compatibility of highly oriented poly(lactic acid)/thermoplastic polyurethane blends produced by solid hot stretching

    Get PDF
    YesHighly oriented poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends were fabricated through solid hot stretching technology in an effort to improve the mechanical properties and blood biocompatibility of PLA as blood-contacting medical devices. It was found that the tensile strength and modulus of the blends can be improved dramatically by stretching. With the increase of draw ratio, the cold crystallization peak became smaller, and the glass transition and the melting peak moved to high temperature, while the crystallinity increased, and the grain size of PLA decreased, indicating of the stress-induced crystallization during drawing. The oriented blends exhibited structures with longitudinal striations which indicate the presence of micro-fibers. TPU phase was finely and homogeneously dispersed in the PLA, and after drawing, TPU domains were elongated to ellipsoid. The introduction of TPU and orientation could enhance the blood compatibility of PLA by prolonging kinetic clotting time, and decreasing hemolysis ratio and platelet activation

    Homeobox gene TGIF-1 is increased in placental endothelial cells of human fetal growth restriction.

    Get PDF
    Aberrant placental angiogenesis is associated with fetal growth restriction (FGR). In the mouse, targeted disruption of the homeobox gene, transforming growth β-induced factor (Tgif-1), which is also a transcription factor, causes defective placental vascularisation. Nevertheless, TGIF-1's role in human placental angiogenesis is unclear. We have previously reported increased TGIF-1 expression in human FGR placentae and demonstrated localisation of TGIF-1 protein in placental endothelial cells (ECs). However, its functional role remains to be investigated. In this study, we aimed to specifically compare TGIF-1 mRNA expression in placental ECs isolated from human FGR-affected pregnancies with gestation-matched control pregnancies in two independent cohorts from Australia and Canada, and to identify the functional role of TGIF-1 in placental angiogenesis using the human umbilical vein endothelial cell-derived cell line, SGHEC-7 and primary human umbilical vein ECs. Real-time PCR revealed that TGIF-1 mRNA expression was significantly increased in ECs isolated from FGR-affected placentae compared with that of controls. The functional roles of TGIF-1 were determined in ECs following TGIF-1 siRNA transfection. TGIF-1 inactivation in ECs significantly reduced TGIF-1 at both the mRNA and protein levels, as well as the proliferative and invasive potential, but significantly increased the angiogenic potential. Using angiogenesis PCR screening arrays, we identified ITGAV, NRP-1, ANPGT-1 and ANPGT-2 as novel downstream targets of TGIF-1, following TGIF-1 inactivation in ECs. Collectively, these results show that increased TGIF-1 in FGR may regulate EC function through mediating the expression of angiogenic molecules and contribute to aberrant placental angiogenesis in FGR pregnancies

    Evaluation of effective parameters for the synthesis of poly (propylene fumarate) by Response Surface Methodology

    Get PDF
    ABSTRACT: Poly(propylene fumarate) (PPF) is an unsaturated linear polyester, which was synthesized for potential applications in filling skeletal defects. The synthesis was carried out according to a two-step polymerization reaction. In this research, a functional relationship among three reaction factors [temperature, reaction time, and stoichiometry of the monomers] in the PPF synthesis was established by responses of the surface methodology/central composite design (CCD). After that, on the basis of the responses of CCD [increasing intensity ratio of the CAH/OAH peaks in Fourier transform infrared (FTIR) spectra], designed substances were synthesized and analyzed by FTIR spectroscopy. The synthesized PPF, based on the optimized synthesis conditions from CCD, had a high molecular weight, low hydroxyl group content, and optimum viscosity. According to the CCD response, the best product was obtained through with a molar ratio of diethyl fumarate/propylene glycol/ZnCl2/hydroquinone of 1:3.5:0.01:0.002 and a 17-h reaction time at 140C. Eventually, the synthesized PPF was characterized by FTIR spectroscopy, NMR, and gel permeation chromatography analyses

    A Mathematical Model of Liver Cell Aggregation In Vitro

    Get PDF
    The behavior of mammalian cells within three-dimensional structures is an area of intense biological research and underpins the efforts of tissue engineers to regenerate human tissues for clinical applications. In the particular case of hepatocytes (liver cells), the formation of spheroidal multicellular aggregates has been shown to improve cell viability and functionality compared to traditional monolayer culture techniques. We propose a simple mathematical model for the early stages of this aggregation process, when cell clusters form on the surface of the extracellular matrix (ECM) layer on which they are seeded. We focus on interactions between the cells and the viscoelastic ECM substrate. Governing equations for the cells, culture medium, and ECM are derived using the principles of mass and momentum balance. The model is then reduced to a system of four partial differential equations, which are investigated analytically and numerically. The model predicts that provided cells are seeded at a suitable density, aggregates with clearly defined boundaries and a spatially uniform cell density on the interior will form. While the mechanical properties of the ECM do not appear to have a significant effect, strong cell-ECM interactions can inhibit, or possibly prevent, the formation of aggregates. The paper concludes with a discussion of our key findings and suggestions for future work

    Weighted composition operators on the Dirichlet space: boundedness and spectral properties

    Get PDF
    Boundedness of weighted composition operators W u,φ acting on the classical Dirichlet space D as W u,φ f=u(f∘φ) is studied in terms of the multiplier space associated to the symbol φ , i.e., M(φ)={u∈D:W u,φ is bounded on D} . A prominent role is played by the multipliers of the Dirichlet space. As a consequence, the spectrum of W u,φ in D whenever φ is an automorphism of the unit disc is studied, extending a recent work of Hyvärinen et al. (J. Funct. Anal. 265:1749–1777, 2013) to the context of the Dirichlet space

    Unprecedented Scissor Effect of Macromolecular Cross-linkers on the Glass Transition Temperature of Poly(N-vinylimidazole), Crystallinity Suppression of Poly(tetrahydrofuran) and Molecular Mobility by Solid State NMR in Poly(N-vinylimidazole)-l-poly(tetrahydrofuran) Conetworks

    Get PDF
    Unexpected correlations have been found between structural parameters and glass transition temperatures (Tg) of poly(N-vinylimidazole) (PVIm) and crystallinity of poly(tetrahydrofuran) (PTHF) in a series of novel, unique PVIm-l-PTHF amphiphilic conetworks synthesized in broad composition ranges via free radical copolymerisation of VIm and semicrystalline, methacrylate-telechelic PTHF macromolecular cross-linkers with varying Mn from 2170 to 10 000 g mol−1. Differential scanning calorimetry (DSC) investigations revealed microphase separation between the covalently bonded PVIm and PTHF components, that is two distinct Tgs corresponding to the respective polymers (PVIm and PTHF) were obtained in these optically clear, transparent materials. Complete microphase separation, i.e. absence of mixed phases, was also confirmed by solid state NMR measurements. The Tg of the PVIm phase significantly decreases with increasing PTHF content, and Fox–Flory type correlation was surprisingly found between the Tg of PVIm and its Mc (average molecular weight between cross-links). This striking finding indicates a unique, unpredicted scissor effect of the macromolecular PTHF cross-linker in these materials, i.e. with respect to glass transition, PVIm behaves as individual chains between cross-links. The molecular mobility in the PVIm chain segments obtained by solid state NMR investigations shows a similar trend as a function of Mc. In the DSC thermograms, the semicrystalline PTHF has a sharp endothermic melting peak (Tm) indicating partial crystallisation of this polymer. It was found that the Tm and the crystalline fraction (Xc) of the PTHF phase are suppressed by even a minimal content of PVIm phase in the conetworks. Even complete diminishing of Xc occurs in conetworks with lower than 40 wt% PTHF of the lowest Mn (2170 g mol−1). Unexpectedly, Tm linearly decreases with Mc in conetworks with constant Mn of PTHF. These data indicate that the decrease of both Tm and Xc of PTHF is not only composition dependent, but the MW of the macromolecular PTHF cross-linker and the Mc of the PVIm component also have effects on these parameters. These results also indicate that chemical bonding of polymer chains in conetworks yields novel materials with unprecedented property variation. This provides unique opportunities for fine tuning of the investigated fundamental material properties, i.e. Tg, Tm and Xc, within certain ranges in the novel PVIm-l-PTHF amphiphilic conetworks by selecting the proper synthesis parameters, that is, composition and MW of the telechelic PTHF macromonomer cross-linker
    corecore