259 research outputs found

    Therapy of acute hepatitis C with interferon: How good is it really?

    Full text link
    To test whether interferon can prevent acute non-A, non-B hepatitis from becoming chronic, a prospective controlled trial was conducted in 25 patients; 11 were treated for an average of 30 days with a mean of 52 megaunits of interferon and 14 acted as controls. 4 patients in the treatment group who continued to have raised serum aminotransferase concentrations after a year's follow-up were given a second course of interferon. Follow-up at 3 years has revealed that all but 1 of those treated showed normal serum aminotransferase, whereas only 3 controls showed such change (p < 0.02). Serum hepatitis C virus RNA became undetectable in 10 of 11 treated and in only 1 of 12 control patients, which suggests that interferon prevents the progression of acute non-A, non-B hepatitis to chronicity by eradicating HCV.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38380/1/1840160232_ftp.pd

    A YY1-dependent increase in aerobic metabolism is indispensable for intestinal organogenesis

    Get PDF
    During late gestation, villi extend into the intestinal lumen to dramatically increase the surface area of the intestinal epithelium, preparing the gut for the neonatal diet. Incomplete development of the intestine is the most common gastrointestinal complication in neonates, but the causes are unclear. We provide evidence in mice that Yin Yang 1 (Yy1) is crucial for intestinal villus development. YY1 loss in the developing endoderm had no apparent consequences until late gestation, after which the intestine differentiated poorly and exhibited severely stunted villi. Transcriptome analysis revealed that YY1 is required for mitochondrial gene expression, and ultrastructural analysis confirmed compromised mitochondrial integrity in the mutant intestine. We found increased oxidative phosphorylation gene expression at the onset of villus elongation, suggesting that aerobic respiration might function as a regulator of villus growth. Mitochondrial inhibitors blocked villus growth in a fashion similar to Yy1 loss, thus further linking oxidative phosphorylation with late-gestation intestinal development. Interestingly, we find that necrotizing enterocolitis patients also exhibit decreased expression of oxidative phosphorylation genes. Our study highlights the still unappreciated role of metabolic regulation during organogenesis, and suggests that it might contribute to neonatal gastrointestinal disorders

    WNT5a in Tongue and Fungiform Papilla Development

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71558/1/j.1749-6632.2009.04369.x.pd

    ICU-Acquired Pneumonia Is Associated with Poor Health Post-COVID-19 Syndrome

    Full text link
    Background: Some patients previously presenting with COVID-19 have been reported to develop persistent COVID-19 symptoms. While this information has been adequately recognised and extensively published with respect to non-critically ill patients, less is known about the incidence and factors associated with the characteristics of persistent COVID-19. On the other hand, these patients very often have intensive care unit-acquired pneumonia (ICUAP). A second infectious hit after COVID increases the length of ICU stay and mechanical ventilation and could have an influence on poor health post-COVID 19 syndrome in ICU-discharged patients. Methods: This prospective, multicentre, and observational study was carrid out across 40 selected ICUs in Spain. Consecutive patients with COVID-19 requiring ICU admission were recruited and evaluated three months after hospital discharge. Results: A total of 1255 ICU patients were scheduled to be followed up at 3 months; however, the final cohort comprised 991 (78.9%) patients. A total of 315 patients developed ICUAP (97% of them had ventilated ICUAP). Patients requiring invasive mechanical ventilation had more persistent post-COVID-19 symptoms than those who did not require mechanical ventilation. Female sex, duration of ICU stay, development of ICUAP, and ARDS were independent factors for persistent poor health post-COVID-19. Conclusions: Persistent post-COVID-19 symptoms occurred in more than two-thirds of patients. Female sex, duration of ICU stay, development of ICUAP, and ARDS all comprised independent factors for persistent poor health post-COVID-19. Prevention of ICUAP could have beneficial effects in poor health post-COVID-19

    Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    Full text link
    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild‐type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin‐deficient rats was markedly different from that of myostatin‐deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin‐like growth factor‐1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy‐related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111244/1/tjp6572.pd

    Four challenges in the field of alternative, radical and citizens’ media research

    Get PDF
    In January 1994 the Zapatista movement in southern Mexico inaugurated a new era of media use for dissent. Since that time, an array of dissenting collectives and individuals have appropriated media technologies in order to make their voices heard or to articulate alternative identities. From Zapatista media to the Arab Spring, social movements throughout the world are taking over, hybridizing, recycling, and adapting media technologies. This new era poses a new set of challenges for academics and researchers in the field of Communication for Social Change (CfSC). Based on examples from Mexico, Lebanon, and Colombia, this article highlights and discusses four such research challenges: accounting for historical context; acknowledging the complexity of communication processes; anchoring analysis in a political economy of information and communication technologies; and positioning new research in relation to existing knowledge and literature within the field of communication and social change.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline

    Pyrin Modulates the Intracellular Distribution of PSTPIP1

    Get PDF
    PSTPIP1 is a cytoskeleton-associated adaptor protein that links PEST-type phosphatases to their substrates. Mutations in PSTPIP1 cause PAPA syndrome (Pyogenic sterile Arthritis, Pyoderma gangrenosum, and Acne), an autoinflammatory disease. PSTPIP1 binds to pyrin and mutations in pyrin result in familial Mediterranean fever (FMF), a related autoinflammatory disorder. Since disease-associated mutations in PSTPIP1 enhance pyrin binding, PAPA syndrome and FMF are thought to share a common pathoetiology. The studies outlined here describe several new aspects of PSTPIP1 and pyrin biology. We document that PSTPIP1, which has homology to membrane-deforming BAR proteins, forms homodimers and generates membrane-associated filaments in native and transfected cells. An extended FCH (Fes-Cip4 homology) domain in PSTPIP1 is necessary and sufficient for its self-aggregation. We further show that the PSTPIP1 filament network is dependent upon an intact tubulin cytoskeleton and that the distribution of this network can be modulated by pyrin, indicating that this is a dynamic structure. Finally, we demonstrate that pyrin can recruit PSTPIP1 into aggregations (specks) of ASC, another pyrin binding protein. ASC specks are associated with inflammasome activity. PSTPIP1 molecules with PAPA-associated mutations are recruited by pyrin to ASC specks with particularly high efficiency, suggesting a unique mechanism underlying the robust inflammatory phenotype of PAPA syndrome

    A study of the distribution of phylogenetically conserved blocks within clusters of mammalian homeobox genes

    Get PDF
    Genome sequencing efforts of the last decade have produced a large amount of data, which has enabled whole-genome comparative analyses in order to locate potentially functional elements and study the overall patterns of phylogenetic conservation. In this paper we present a statistically based method for the characterization of these patterns in mammalian DNA sequences. We have applied this approach to the study of exceptionally well conserved homeobox gene clusters (Hox), based on an alignment of six species, and we have constructed a map of Hox cataloguing the conserved fragments, along with their locations in relation to the genes and other landmarks, sometimes showing unexpected layouts
    • 

    corecore