7 research outputs found

    Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome.

    Get PDF
    BACKGROUND: The right ventricular outflow tract (RVOT) is acknowledged to be responsible for arrhythmogenesis in Brugada syndrome (BrS), but the pathophysiology remains controversial. OBJECTIVES: This study assessed the substrate underlying BrS at post-mortem and in vivo, and the role for open thoracotomy ablation. METHODS: Six whole hearts from male post-mortem cases of unexplained sudden death (mean age 23.2 years) with negative specialist cardiac autopsy and familial BrS were used and matched to 6 homograft control hearts by sex and age (within 3 years) by random risk set sampling. Cardiac autopsy sections from cases and control hearts were stained with picrosirius red for collagen. The RVOT was evaluated in detail, including immunofluorescent stain for connexin-43 (Cx43). Collagen and Cx43 were quantified digitally and compared. An in vivo study was undertaken on 6 consecutive BrS patients (mean age 39.8 years, all men) during epicardial RVOT ablation for arrhythmia via thoracotomy. Abnormal late and fractionated potentials indicative of slowed conduction were identified, and biopsies were taken before ablation. RESULTS: Collagen was increased in BrS autopsy cases compared with control hearts (odds ratio [OR]: 1.42; p = 0.026). Fibrosis was greatest in the RVOT (OR: 1.98; p = 0.003) and the epicardium (OR: 2.00; p = 0.001). The Cx43 signal was reduced in BrS RVOT (OR: 0.59; p = 0.001). Autopsy and in vivo RVOT samples identified epicardial and interstitial fibrosis. This was collocated with abnormal potentials in vivo that, when ablated, abolished the type 1 Brugada electrocardiogram without ventricular arrhythmia over 24.6 ± 9.7 months. CONCLUSIONS: BrS is associated with epicardial surface and interstitial fibrosis and reduced gap junction expression in the RVOT. This collocates to abnormal potentials, and their ablation abolishes the BrS phenotype and life-threatening arrhythmias. BrS is also associated with increased collagen throughout the heart. Abnormal myocardial structure and conduction are therefore responsible for BrS

    Treatment of electrical storms in Brugada syndrome

    Get PDF
    Patients with Brugada syndrome (BrS) not uncommonly suffer from recurrent and recalcitrant ventricular fibrillation episodes, the so-called “electrical storm” which is malignant and potentially lethal event. While electrical storm in BrS is a therapeutic challenge, fortunately there are effective therapeutic solutions which must be compulsory applied: Elimination of precipitating factors, isoproterenol and oral quinidine are the first 2 therapeutic steps that one must urgently commenced. And if this measure should fail, ablation of the triggering ventricular premature beats and/or substrate ablation at the anterior aspect of the right ventricular outflow tract should be performed

    Common and rare susceptibility genetic variants predisposing to Brugada syndrome in Thailand

    No full text
    BACKGROUND: Mutations in SCN5A are rarely found in Thai patients with Brugada syndrome (BrS). Recent evidence suggested that common genetic variations may underlie BrS in a complex inheritance model. OBJECTIVE: The purpose of this study was to find common and rare/low-frequency genetic variants predisposing to BrS in persons in Thailand. METHODS: We conducted a genome-wide association study (GWAS) to explore the association of common variants in 154 Thai BrS cases and 432 controls. We sequenced SCN5A in 131 cases and 205 controls. Variants were classified according to current guidelines, and case-control association testing was performed for rare and low-frequency variants. RESULTS: Two loci were significantly associated with BrS. The first was near SCN5A/SCN10A (lead marker rs10428132; odds ratio [OR] 2.4; P = 3 Ă— 10-10). Conditional analysis identified a novel independent signal in the same locus (rs6767797; OR 2.3; P = 2.7 Ă— 10-10). The second locus was near HEY2 (lead marker rs3734634; OR 2.5; P = 7 Ă— 10-9). Rare (minor allele frequency [MAF] 0.0001) variants also was observed in cases, with 1 variant (SCN5A: p.Arg965Cys) detected in 4.6% of Thai BrS patients vs 0.5% in controls (P = 0.015; OR 9.8; 95% CI 1.2-82.3). CONCLUSION: The genetic basis of BrS in Thailand includes a wide spectrum of variant frequencies and effect sizes. As previously shown in European and Japanese populations, common variants near SCN5A and HEY2 are associated with BrS in the Thai population, confirming the transethnic transferability of these 2 major BrS loci
    corecore