268 research outputs found

    The Metalloprotease Meprinβ Processes E-Cadherin and Weakens Intercellular Adhesion

    Get PDF
    BACKGROUND: Meprin (EC 3.4.24.18), an astacin-like metalloprotease, is expressed in the epithelium of the intestine and kidney tubules and has been related to cancer, but the mechanistic links are unknown. METHODOLOGY/PRINCIPAL FINDINGS: We used MDCK and Caco-2 cells stably transfected with meprin alpha and or meprin beta to establish models of renal and intestinal epithelial cells expressing this protease at physiological levels. In both models E-cadherin was cleaved, producing a cell-associated 97-kDa E-cadherin fragment, which was enhanced upon activation of the meprin zymogen and reduced in the presence of a meprin inhibitor. The cleavage site was localized in the extracellular domain adjacent to the plasma membrane. In vitro assays with purified components showed that the 97-kDa fragment was specifically generated by meprin beta, but not by ADAM-10 or MMP-7. Concomitantly with E-cadherin cleavage and degradation of the E-cadherin cytoplasmic tail, the plaque proteins beta-catenin and plakoglobin were processed by an intracellular protease, whereas alpha-catenin, which does not bind directly to E-cadherin, remained intact. Using confocal microscopy, we observed a partial colocalization of meprin beta and E-cadherin at lateral membranes of incompletely polarized cells at preconfluent or early confluent stages. Meprin beta-expressing cells displayed a reduced strength of cell-cell contacts and a significantly lower tendency to form multicellular aggregates. CONCLUSIONS/SIGNIFICANCE: By identifying E-cadherin as a substrate for meprin beta in a cellular context, this study reveals a novel biological role of this protease in epithelial cells. Our results suggest a crucial role for meprin beta in the control of adhesiveness via cleavage of E-cadherin with potential implications in a wide range of biological processes including epithelial barrier function and cancer progression

    Genome-wide study of association and interaction with maternal cytomegalovirus infection suggests new schizophrenia loci.

    Get PDF
    Genetic and environmental components as well as their interaction contribute to the risk of schizophrenia, making it highly relevant to include environmental factors in genetic studies of schizophrenia. This study comprises genome-wide association (GWA) and follow-up analyses of all individuals born in Denmark since 1981 and diagnosed with schizophrenia as well as controls from the same birth cohort. Furthermore, we present the first genome-wide interaction survey of single nucleotide polymorphisms (SNPs) and maternal cytomegalovirus (CMV) infection. The GWA analysis included 888 cases and 882 controls, and the follow-up investigation of the top GWA results was performed in independent Danish (1396 cases and 1803 controls) and German-Dutch (1169 cases, 3714 controls) samples. The SNPs most strongly associated in the single-marker analysis of the combined Danish samples were rs4757144 in ARNTL (P=3.78 × 10(-6)) and rs8057927 in CDH13 (P=1.39 × 10(-5)). Both genes have previously been linked to schizophrenia or other psychiatric disorders. The strongest associated SNP in the combined analysis, including Danish and German-Dutch samples, was rs12922317 in RUNDC2A (P=9.04 × 10(-7)). A region-based analysis summarizing independent signals in segments of 100 kb identified a new region-based genome-wide significant locus overlapping the gene ZEB1 (P=7.0 × 10(-7)). This signal was replicated in the follow-up analysis (P=2.3 × 10(-2)). Significant interaction with maternal CMV infection was found for rs7902091 (P(SNP × CMV)=7.3 × 10(-7)) in CTNNA3, a gene not previously implicated in schizophrenia, stressing the importance of including environmental factors in genetic studies

    Lymphocytes Accelerate Epithelial Tight Junction Assembly: Role of AMP-Activated Protein Kinase (AMPK)

    Get PDF
    The tight junctions (TJs), characteristically located at the apicolateral borders of adjacent epithelial cells, are required for the proper formation of epithelial cell polarity as well as for sustaining the mucosal barrier to the external environment. The observation that lymphocytes are recruited by epithelial cells to the sites of infection [1] suggests that they may play a role in the modulation of epithelial barrier function and thus contribute to host defense. To test the ability of lymphocytes to modulate tight junction assembly in epithelial cells, we set up a lymphocyte-epithelial cell co-culture system, in which Madin-Darby canine kidney (MDCK) cells, a well-established model cell line for studying epithelial TJ assembly [2], were co-cultured with mouse lymphocytes to mimic an infection state. In a typical calcium switch experiment, the TJ assembly in co-culture was found to be accelerated compared to that in MDCK cells alone. This accelaration was found to be mediated by AMP-activated protein kinase (AMPK). AMPK activation was independent of changes in cellular ATP levels but it was found to be activated by the pro-inflammatory cytokine TNF-α. Forced suppression of AMPK, either with a chemical inhibitor or by knockdown, abrogated the accelerating effect of lymphocytes on TJ formation. Similar results were also observed in a co-culture with lymphocytes and Calu-3 human airway epithelial cells, suggesting that the activation of AMPK may be a general mechanism underlying lymphocyte-accelerated TJ assembly in different epithelia. These results suggest that signals from lymphocytes, such as cytokines, facilitate TJ assembly in epithelial cells via the activation of AMPK

    Candidate target genes for loss of heterozygosity on human chromosome 17q21

    Get PDF
    Loss of heterozygosity (LOH) on chromosome 17q21 has been detected in 30% of primary human breast tumours. The smallest common region deleted occurred in an interval between the D17S746 and D17S846 polymorphic sequences tagged sites that are located on two recombinant PI-bacteriophage clones of chromosome 17q21: 122F4 and 50H1, respectively. To identify the target gene for LOH, we defined a map of this chromosomal region. We found the following genes: JUP, FK506BP10, SC65, Gastrin (GAS) and HAP1. Of the genes that have been identified in this study, only JUP is located between D17S746 and D17S846. This was of interest since earlier studies have shown that JUP expression is altered in breast, lung and thyroid tumours as well as cell lines having LOH in chromosome 17q21. However, no mutations were detected in JUP using single-strand conformation polymorphism analysis of primary breast tumour DNAs having LOH at 17q21. We could find no evidence that the transcription promoter for JUP is methylated in tumour DNAs having LOH at 17q21. We suspect that the target gene for LOH in primary human breast tumours on chromosome 17q21 is either JUP and results in a haploinsufficiency for expression or may be an unidentified gene located in the interval between D17S846 and JUP. © 2004 Cancer Research UK

    Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes.

    Get PDF
    A considerable body of research indicates that mammary gland branching morphogenesis is dependent, in part, on the extracellular matrix (ECM), ECM-receptors, such as integrins and other ECM receptors, and ECM-degrading enzymes, including matrix metalloproteinases (MMPs) and their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). There is some evidence that these ECM cues affect one or more of the following processes: cell survival, polarity, proliferation, differentiation, adhesion, and migration. Both three-dimensional culture models and genetic manipulations of the mouse mammary gland have been used to study the signaling pathways that affect these processes. However, the precise mechanisms of ECM-directed mammary morphogenesis are not well understood. Mammary morphogenesis involves epithelial 'invasion' of adipose tissue, a process akin to invasion by breast cancer cells, although the former is a highly regulated developmental process. How these morphogenic pathways are integrated in the normal gland and how they become dysregulated and subverted in the progression of breast cancer also remain largely unanswered questions

    Nuclear β-catenin expression is closely related to ulcerative growth of colorectal carcinoma

    Get PDF
    Although most colorectal cancer develops based on the adenoma–adenocarcinoma sequence, morphologically, colorectal cancer is not a homogeneous disease entity. Generally, there are two distinct morphological types: polypoid and ulcerative colorectal tumours. Previous studies have demonstrated that K-ras codon 12 mutations are preferentially associated with polypoid growth of colorectal cancer; however, little is known about the molecular mechanism that determines ulcerative growth of colorectal cancer. β-catenin complex plays a critical role both in tumorigenesis and morphogenesis. We examined the differential expression of β-catenin and its related factors among different types of colorectal cancer in order to determine any relationship with gross tumour morphology. Immunohistochemical staining of β-catenin, E-cadherin and MMP-7 was performed on 51 tumours, including 26 polypoid tumours and 25 ulcerative tumours. Protein truncation tests and single-strand conformational polymorphism for mutation of the adenomatous polyposis coli tumour suppressor gene, as well as single-strand conformational polymorphism for the mutation of β-catenin exon 3 were also done. Nuclear expression of β-catenin was observed in 18 out of 25 (72%) cases of ulcerative colorectal cancer and seven out of 26 (26.9%) cases of polypoid colorectal cancer. A significant relationship of nuclear β-catenin expression with ulcerative colorectal cancer was found (P<0.001). However, this finding was independent of adenomatous polyposis coli tumour suppressor gene mutation and E-cadherin expression. Together with previous data, we propose that different combinations of genetic alterations may underlie different morphological types of colorectal cancer. These findings should be taken into consideration whenever developing a new genetic diagnosis or therapy for colorectal cancer

    Cadherin–catenin expression in primary colorectal cancer: a survival analysis

    Get PDF
    Both cell adhesion and cell signalling events are mediated by components of the cadherin-catenin complex. Loss of expression of the components of this complex have been shown to correlate with invasive behaviour in many tumour types although their exact role in colorectal cancer remains unclear. Immunohistochemical analysis of the expression of components of the cadherin-catenin complex in colorectal cancers from 60 patients was undertaken. Loss of memberanous expression of E-cadherin, alpha-catenin and beta-catenin was demonstrated in 52%, 85% and 40% of tumours respectively. Focal nuclear expression of beta-catenin ( 75% of tumour cells per section) was seen in 11 (18%) tumours. Loss of membranous alpha-catenin expression significantly correlated with tumour de-differentiation (P = 0.009). There was a trend towards an association between advanced tumour stage and loss of membranous expression of alpha-catenin or beta-catenin, although these associations were not statistically significant. Univariate analysis revealed that advanced Dukes' stage, tumour de-differentiation, loss of membranous beta-catenin expression, cytoplasmic beta-catenin expression and widespread nuclear expression of beta-catenin all correlated with short survival following apparently curative resection of the primary tumour. However, only Dukes' stage (P = 0.002), tumour grade (P = 0.02) and widespread nuclear expression of beta-catenin (P = 0.002) were independent predictors of short survival. Disturbed growth signalling events in colorectal tumours are thought to result in nuclear accumulation of beta-catenin. Consequently, tumours with widespread nuclear expression of beta-catenin are likely to have severely abnormal growth characteristics, and which therefore might be predictive of short survival in these patients

    Epimorphin expression in interstitial pneumonia

    Get PDF
    Epimorphin modulates epithelial morphogenesis in embryonic mouse organs. We previously suggested that epimorphin contributes to repair of bleomycin-induced pulmonary fibrosis in mice via epithelium-mesenchyme interactions. To clarify the role of epimorphin in human lungs, we evaluated epimorphin expression and localization in normal lungs, lungs with nonspecific interstitial pneumonia (NSIP), and lungs with usual interstitial pneumonia (UIP); we also studied the effect of recombinant epimorphin on cultured human alveolar epithelial cells in vitro. Northern and Western blotting analyses revealed that epimorphin expression in NSIP samples were significantly higher than those in control lungs and lungs with UIP. Immunohistochemistry showed strong epimorphin expression in mesenchymal cells of early fibrotic lesions and localization of epimorphin protein on mesenchymal cells and extracellular matrix of early fibrotic lesions in the nonspecific interstitial pneumonia group. Double-labeled fluorescent images revealed expression of matrix metalloproteinase 2 in re-epithelialized cells overlying epimorphin-positive early fibrotic lesions. Immunohistochemistry and metalloproteinase activity assay demonstrated augmented expression of metalloproteinase induced by recombinant epimorphin in human alveolar epithelial cells. These findings suggest that epimorphin contributes to repair of pulmonary fibrosis in nonspecific interstitial pneumonia, perhaps partly by inducing expression of matrix metalloproteinase 2, which is an important proteolytic factor in lung remodeling
    corecore