7 research outputs found

    Cessation of exclusive breastfeeding and seasonality, but not small intestinal bacterial overgrowth, are associated with environmental enteric dysfunction: A birth cohort study amongst infants in rural Kenya.

    Get PDF
    Background: Environmental Enteric Dysfunction (EED) is a chronic intestinal inflammatory disorder of unclear aetiology prevalent amongst children in low-income settings and associated with stunting. We aimed to characterise development of EED and its putative risk factors amongst rural Kenyan infants. Methods: In a birth cohort study in Junju, rural coastal Kenya, between August 2015 and January 2017, 100 infants were each followed for nine months. Breastfeeding status was recorded weekly and anthropometry monthly. Acute illnesses and antibiotics were captured by active and passive surveillance. Intestinal function and small intestinal bacterial overgrowth (SIBO) were assessed by monthly urinary lactulose mannitol (LM) and breath hydrogen tests. Faecal alpha-1-antitrypsin, myeloperoxidase and neopterin were measured as EED biomarkers, and microbiota composition assessed by 16S sequencing. Findings: Twenty nine of the 88 participants (33%) that underwent length measurement at nine months of age were stunted (length-for-age Z score <-2). During the rainy season, linear growth was slower and LM ratio was higher. In multivariable models, LM ratio, myeloperoxidase and neopterin increased after cessation of continuous-since-birth exclusive breastfeeding. For LM ratio this only occurred during the rainy season. EED markers were not associated with antibiotics, acute illnesses, SIBO, or gut microbiota diversity. Microbiota diversified with age and was not strongly associated with complementary food introduction or linear growth impairment. Interpretation: Our data suggest that intensified promotion of uninterrupted exclusive breastfeeding amongst infants under six months during the rainy season, where rainfall is seasonal, may help prevent EED. Our findings also suggest that therapeutic strategies directed towards SIBO are unlikely to impact on EED in this setting. However, further development of non-invasive diagnostic methods for SIBO is required. Funding: This research was funded in part by the Wellcome Trust (Research Training Fellowship to RJC (103376/Z/13/Z)). EPKP was supported by the MRC/DfID Newton Fund (MR/N006259/1). JAB was supported by the MRC/DFiD/Wellcome Trust Joint Global Health Trials scheme (MR/M007367/1) and the Bill & Melinda Gates Foundation (OPP1131320). HHU was supported by the NIHR Oxford Biomedical Research Centre (IS-BRC-1215-20008)

    Pooled testing conserves SARS-CoV-2 laboratory resources and improves test turn-around time: Experience on the Kenyan Coast

    No full text
    Background: International recommendations for the control of the coronavirus disease 2019 (COVID-19) pandemic emphasize the central role of laboratory testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiological agent, at scale. The availability of testing reagents, laboratory equipment and qualified staff are important bottlenecks to achieving this. Elsewhere, pooled testing (i.e. combining multiple samples in the same reaction) has been suggested to increase testing capacities in the pandemic period. Methods: We discuss our experience with SARS-CoV-2 pooled testing using real-time reverse transcription polymerase chain reaction (RT-PCR) on the Kenyan Coast. Results: In mid-May, 2020, our RT-PCR testing capacity for SARS-CoV-2 was improved by ~100% as a result of adoption of a six-sample pooled testing strategy. This was accompanied with a concomitant saving of ~50% of SARS-CoV-2 laboratory test kits at both the RNA extraction and RT-PCR stages. However, pooled testing came with a slight decline of test sensitivity. The RT-PCR cycle threshold value (ΔCt) was ~1.59 higher for samples tested in pools compared to samples tested singly. Conclusions: Pooled testing is a useful strategy to increase SARS-CoV-2 laboratory testing capacity especially in low-income settings

    The Childhood Acute Illness and Nutrition (CHAIN) network nested case-cohort study protocol: a multi-omics approach to understanding mortality among children in sub-Saharan Africa and South Asia.

    No full text
    Introduction: Many acutely ill children in low- and middle-income settings have a high risk of mortality both during and after hospitalisation despite guideline-based care. Understanding the biological mechanisms underpinning mortality may suggest optimal pathways to target for interventions to further reduce mortality. The Childhood Acute Illness and Nutrition (CHAIN) Network ( www.chainnnetwork.org) Nested Case-Cohort Study (CNCC) aims to investigate biological mechanisms leading to inpatient and post-discharge mortality through an integrated multi-omic approach. Methods and analysis; The CNCC comprises a subset of participants from the CHAIN cohort (1278/3101 hospitalised participants, including 350 children who died and 658 survivors, and 270/1140 well community children of similar age and household location) from nine sites in six countries across sub-Saharan Africa and South Asia. Systemic proteome, metabolome, lipidome, lipopolysaccharides, haemoglobin variants, toxins, pathogens, intestinal microbiome and biomarkers of enteropathy will be determined. Computational systems biology analysis will include machine learning and multivariate predictive modelling with stacked generalization approaches accounting for the different characteristics of each biological modality. This systems approach is anticipated to yield mechanistic insights, show interactions and behaviours of the components of biological entities, and help develop interventions to reduce mortality among acutely ill children. Ethics and dissemination. The CHAIN Network cohort and CNCC was approved by institutional review boards of all partner sites. Results will be published in open access, peer reviewed scientific journals and presented to academic and policy stakeholders. Data will be made publicly available, including uploading to recognised omics databases. Trial registration NCT03208725

    Azithromycin for Bacterial Watery Diarrhea: A Reanalysis of the AntiBiotics for Children With Severe Diarrhea (ABCD) Trial Incorporating Molecular Diagnostics.

    No full text
    BackgroundBacterial pathogens cause substantial diarrhea morbidity and mortality among children living in endemic settings, yet antimicrobial treatment is only recommended for dysentery or suspected cholera.MethodsAntiBiotics for Children with severe Diarrhea was a 7-country, placebo-controlled, double-blind efficacy trial of azithromycin in children 2-23 months of age with watery diarrhea accompanied by dehydration or malnutrition. We tested fecal samples for enteric pathogens utilizing quantitative polymerase chain reaction to identify likely and possible bacterial etiologies and employed pathogen-specific cutoffs based on genomic target quantity in previous case-control diarrhea etiology studies to identify likely and possible bacterial etiologies.ResultsAmong 6692 children, the leading likely etiologies were rotavirus (21.1%), enterotoxigenic Escherichia coli encoding heat-stable toxin (13.3%), Shigella (12.6%), and Cryptosporidium (9.6%). More than one-quarter (1894 [28.3%]) had a likely and 1153 (17.3%) a possible bacterial etiology. Day 3 diarrhea was less common in those randomized to azithromycin versus placebo among children with a likely bacterial etiology (risk difference [RD]likely, -11.6 [95% confidence interval {CI}, -15.6 to -7.6]) and possible bacterial etiology (RDpossible, -8.7 [95% CI, -13.0 to -4.4]) but not in other children (RDunlikely, -0.3% [95% CI, -2.9% to 2.3%]). A similar association was observed for 90-day hospitalization or death (RDlikely, -3.1 [95% CI, -5.3 to -1.0]; RDpossible, -2.3 [95% CI, -4.5 to -.01]; RDunlikely, -0.6 [95% CI, -1.9 to .6]). The magnitude of risk differences was similar among specific likely bacterial etiologies, including Shigella.ConclusionsAcute watery diarrhea confirmed or presumed to be of bacterial etiology may benefit from azithromycin treatment.Clinical trials registrationNCT03130114

    Building laboratory capacity to detect and characterize pathogens of public and global health security concern in Kenya

    No full text
    Since 1979, multiple CDC Kenya programs have supported the development of diagnostic expertise and laboratory capacity in Kenya. In 2004, CDC's Global Disease Detection (GDD) program within the Division of Global Health Protection in Kenya (DGHP-Kenya) initiated close collaboration with Kenya Medical Research Institute (KEMRI) and developed a laboratory partnership called the Diagnostic and Laboratory Systems Program (DLSP). DLSP built onto previous efforts by malaria, human immunodeficiency virus (HIV) and tuberculosis (TB) programs and supported the expansion of the diagnostic expertise and capacity in KEMRI and the Ministry of Health. First, DLSP developed laboratory capacity for surveillance of diarrheal, respiratory, zoonotic and febrile illnesses to understand the etiology burden of these common illnesses and support evidenced-based decisions on vaccine introductions and recommendations in Kenya. Second, we have evaluated and implemented new diagnostic technologies such as TaqMan Array Cards (TAC) to detect emerging or reemerging pathogens and have recently added a next generation sequencer (NGS). Third, DLSP provided rapid laboratory diagnostic support for outbreak investigation to Kenya and regional countries. Fourth, DLSP has been assisting the Kenya National Public Health laboratory-National Influenza Center and microbiology reference laboratory to obtain World Health Organization (WHO) certification and ISO15189 accreditation respectively. Fifth, we have supported biosafety and biosecurity curriculum development to help Kenyan laboratories safely and appropriately manage infectious pathogens. These achievements, highlight how in collaboration with existing CDC programs working on HIV, tuberculosis and malaria, the Global Health Security Agenda can have significantly improve public health in Kenya and the region. Moreover, Kenya provides an example as to how laboratory science can help countries detect and control of infectious disease outbreaks and other public health threats more rapidly, thus enhancing global health security
    corecore