394 research outputs found
pairs from a nuclear transition signaling an elusive light neutral boson
Electron-positron pairs have been observed in the 10.95-MeV decay
in O. The branching ratio of the ee pairs compared to the
3.84-MeV decay of the level is deduced to be
. This magnetic monopole (M0) transition cannot proceed by
-ray decay and is, to first order, forbidden for internal pair
creation. However, the transition may also proceed by the emission of a light
neutral or boson. Indeed, we do observe a sharp peak in the
angular correlation with all the characteristics belonging to the
intermediate emission of such a boson with an invariant mass of 8.5(5)
MeV/c. It may play a role in the current quest for light dark matter in the
universe.Comment: 6 page
Observation of Anomalous Internal Pair Creation in Be: A Possible Signature of a Light, Neutral Boson
Electron-positron angular correlations were measured for the isovector
magnetic dipole 17.6 MeV state (, ) ground state
(, ) and the isoscalar magnetic dipole 18.15 MeV (,
) state ground state transitions in Be. Significant
deviation from the internal pair creation was observed at large angles in the
angular correlation for the isoscalar transition with a confidence level of . This observation might indicate that, in an intermediate step, a
neutral isoscalar particle with a mass of 16.70 (stat)
(sys) MeV and was created.Comment: 5 pages, 5 figure
Post-Prior discrepancies in CDW-EIS calculations for ion impact ionization fully differential cross sections
In this work we present fully differential cross sections (FDCSs)
calculations using post and prior version of CDW--EIS theory for helium single
ionization by 100 MeV C amu and 3.6 MeV amu Au and
Au ions. We performed our calculations for different momentum transfer
and ejected electron energies. The influence of internuclear potential on the
ejected electron spectra is taken into account in all cases. We compare our
calculations with absolute experimental measurements. It is shown that prior
version calculations give better agreement with experiments in almost all
studied cases.Comment: 9 pages, 7 figure
Exploring the multi-humped fission barrier of 238U via sub-barrier photofission
The photofission cross-section of 238U was measured at sub-barrier energies
as a function of the gamma-ray energy using, for the first time, a
monochromatic, high-brilliance, Compton-backscattered gamma-ray beam. The
experiment was performed at the High Intensity gamma-ray Source (HIgS) facility
at beam energies between E=4.7 MeV and 6.0 MeV and with ~3% energy resolution.
Indications of transmission resonances have been observed at gamma-ray beam
energies of E=5.1 MeV and 5.6 MeV with moderate amplitudes. The triple-humped
fission barrier parameters of 238U have been determined by fitting EMPIRE-3.1
nuclear reaction code calculations to the experimental photofission cross
section.Comment: 5 pages, 3 figure
Transmission resonance spectroscopy in the third minimum of 232Pa
The fission probability of 232Pa was measured as a function of the excitation
energy in order to search for hyperdeformed (HD) transmission resonances using
the (d,pf) transfer reaction on a radioactive 231Pa target. The experiment was
performed at the Tandem accelerator of the Maier-Leibnitz Laboratory (MLL) at
Garching using the 231Pa(d,pf) reaction at a bombarding energy of E=12 MeV and
with an energy resolution of dE=5.5 keV. Two groups of transmission resonances
have been observed at excitation energies of E=5.7 and 5.9 MeV. The fine
structure of the resonance group at E=5.7 MeV could be interpreted as
overlapping rotational bands with a rotational parameter characteristic to a HD
nuclear shape. The fission barrier parameters of 232Pa have been determined by
fitting TALYS 1.2 nuclear reaction code calculations to the overall structure
of the fission probability. From the average level spacing of the J=4 states,
the excitation energy of the ground state of the 3rd minimum has been deduced
to be E(III)=5.05 MeV.Comment: 6 pages, 8 figure
Polyploid Adipose Stem Cells Shift the Balance of IGF1/IGFBP2 to Promote the Growth of Breast Cancer
Background: The close proximity of adipose tissue and mammary epithelium predispose involvement of adipose cells in breast cancer development. Adipose-tissue stem cells (ASCs) contribute to tumor stroma and promote growth of cancer cells. In our previous study, we have shown that murine ASCs, which undergo polyploidization during their prolonged in vitro culturing, enhanced the proliferation of 4T1 murine breast cancer cells in IGF1 dependent manner.
Aims: In the present study, our aim was to clarify the regulation of ASC-derived IGF1.
Methods: 4T1 murine breast carcinoma cells were co-transplanted with visceral fat-derived ASCs (vASC) or with the polyploid ASC.B6 cell line into female BALB/c mice and tumor growth and lung metastasis were monitored. The conditioned media of vASCs and ASC.B6 cells were subjected to LC-MS/MS analysis and the production of IGFBP2 was verified by Western blotting. The regulatory effect was examined by adding recombinant IGFBP2 to the co-culture of ASC.B6 and 4T1. Akt/protein kinase B (PKB) activation was detected by Western blotting.
Results: Polyploid ASCs promoted the tumor growth and metastasis more potently than vASCs with normal karyotype. vASCs produced the IGF1 regulator IGFBP2, which inhibited proliferation of 4T1 cells. Downregulation of IGFBP2 by polyploidization of ASCs and enhanced secretion of IGF1 allowed survival signaling in 4T1 cells, leading to Akt phosphorylation.
Conclusions: Our results implicate that ASCs in the tumor microenvironment actively regulate the growth of breast cancer cells through the IGF/IGFBP system
Munc18-1: sequential interactions with the fusion machinery stimulate vesicle docking and priming
Exocytosis of secretory or synaptic vesicles is executed by a mechanism including the SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. Munc18-1 is a part of this fusion machinery, but its role is controversial because it is indispensable for fusion but also inhibits the assembly of purified SNAREs in vitro. This inhibition reflects the binding of Munc18-1 to a closed conformation of the target-SNARE syntaxin1. The controversy would be solved if binding to closed syntaxin1 were shown to be stimulatory for vesicle fusion and/or additional essential interactions were identified between Munc18-1 and the fusion machinery. Here, we provide evidence for both notions by dissecting sequential steps of the exocytotic cascade while expressing Munc18 variants in the Munc18-1 null background. In Munc18-1 null chromaffin cells, vesicle docking is abolished and syntaxin levels are reduced. A mutation that diminished Munc18 binding to syntaxin1 in vitro attenuated the vesicle-docking step but rescued vesicle priming in excess of docking. Conversely, expressing the Munc18-2 isoform, which also displays binding to closed syntaxin1, rescued vesicle docking identical with Munc18-1 but impaired more downstream vesicle priming steps. All Munc18 variants restored syntaxin1 levels at least to wild-type levels, showing that the docking phenotype is not caused by syntaxin1 reduction. None of the Munc18 variants affected vesicle fusion kinetics or fusion pore duration. In conclusion, binding of Munc18-1 to closed syntaxin1 stimulates vesicle docking and a distinct interaction mode regulates the consecutive priming step. Copyright © 2007 Society for Neuroscience
Routes Obey Hierarchy in Complex Networks.
The last two decades of network science have discovered stunning similarities in the topological characteristics of real life networks (many biological, social, transportation and organizational networks) on a strong empirical basis. However our knowledge about the operational paths used in these networks is very limited, which prohibits the proper understanding of the principles of their functioning. Today, the most widely adopted hypothesis about the structure of the operational paths is the shortest path assumption. Here we present a striking result that the paths in various networks are significantly stretched compared to their shortest counterparts. Stretch distributions are also found to be extremely similar. This phenomenon is empirically confirmed on four networks from diverse areas of life. We also identify the high-level path selection rules nature seems to use when picking its paths
- …