7 research outputs found

    Methodological Approach for 1D Simulation of Port Water Injection for Knock Mitigation in a Turbocharged DISI Engine

    Get PDF
    : In the upcoming years, more challenging CO2 emission targets along with the introduction of more severe Real Driving Emissions limits are expected to foster the development and the exploitation of innovative technologies to further improve the efficiency of automotive Spark Ignition (SI) engines. Among these technologies, Water Injection (WI), thanks to its knock mitigation capabilities, can represent a valuable solution, although it may significantly increase the complexity of engine design and calibration. Since, to tackle such a complexity, reliable virtual development tools seem to be mandatory, this paper aims to describe a quasi-dimensional approach to model a Port Water Injection (PWI) system integrated in a Turbocharged Direct Injection Spark Ignition (T-DISI) engine. Through a port-puddling model calibrated with 3D-CFD data, the proposed methodology was proven to be able to properly replicate transient phenomena of water wall film formation, catching cycle by cycle the amount of water that enters into the cylinder and is therefore available for knock mitigation. Moreover, when compared with experimental measurements under steady state operating conditions, this method showed good capabilities to predict the impact of the water content on the combustion process and on the knock occurrence likelihood

    Synergetic Application of Zero-, One-, and Three-Dimensional Computational Fluid Dynamics Approaches for Hydrogen-Fuelled Spark Ignition Engine Simulation

    Get PDF
    Nowadays hydrogen, especially if derived from biomass or produced by renewable power, is rising as a key energy solution to shift the mobility of the future toward a low-emission scenario. It is well known that hydrogen can be used with both internal combustion engines (ICEs) and fuel cells (FCs); however, hydrogen-fuelled ICE represents a robust and cost-efficient option to be quickly implemented under the current production infrastructure. In this framework, this article focuses on the conversion of a state-of-the-art 3.0L diesel engine in a hydrogen-fuelled Spark Ignition (SI) one. To preliminarily evaluate the potential of the converted ICE, a proper simulation methodology was defined combining zero-, one-, and three-dimensional (0D/1D/3D) Computational Fluid Dynamics (CFD) approaches. First of all, a detailed kinetic scheme was selected for both hydrogen combustion and Nitrogen Oxides (NOx) emission predictions in a 3D-CFD environment. Afterward, to bring the analysis to a system-level approach, a 1D-CFD predictive combustion model was firstly optimized by implementing a specific laminar flame speed correlation and, secondly, calibrated against the 3D-CFD combustion results. The combustion model was then integrated into a complete engine model to assess the potential benefit derived from the wide range of flammability and the high flame speed of hydrogen on a complete engine map, considering NOx formation and knock avoidance as priority parameters to control. Without a specific modification of turbocharger and combustion systems, a power density of 34 kW/L and a maximum brake thermal efficiency (BTE) of about 42% were achieved, thus paving the way for further hardware optimization (e.g., compression ratio reduction, turbocharger optimization, direct injection [DI]) to fully exploit the advantages enabled by hydrogen combustion

    Polymer-mediated delivery of siRNAs to hepatocellular carcinoma: Variables affecting specificity and effectiveness

    Get PDF
    Despite the advances in anticancer therapies, their effectiveness for many human tumors is still far from being optimal. Significant improvements in treatment efficacy can come from the enhancement of drug specificity. This goal may be achieved by combining the use of therapeutic molecules with tumor specific effects and delivery carriers with tumor targeting ability. In this regard, nucleic acid-based drug (NABD) and particularly small interfering RNAs (siRNAs), are attractive molecules due to the possibility to be engineered to target specific tumor genes. On the other hand, polymeric-based delivery systems are emerging as versatile carriers to generate tumor-targeted delivery systems. Here we will focus on the most recent findings in the selection of siRNA/polymeric targeted delivery systems for hepatocellular carcinoma (HCC), a human tumor for which currently available therapeutic approaches are poorly effective. In addition, we will discuss the most attracting and, in our opinion, promising siRNA-polymer combinations for HCC in relation to the biological features of HCC tissue. Attention will be also put on the mathematical description of the mechanisms ruling siRNA-carrier delivery, this being an important aspect to improve effectiveness reducing the experimental work
    corecore