38 research outputs found

    Extinction Variations in the H II Regions Sharpless 156 and 162

    Get PDF
    Accurate spectrophotometric observations of the nebulae Sh 156 and Sh 162 and of their exciting stars, combined with new high resolution radio maps by Israel, enable the derivation of Av towards 15 points in these nebulae. These values are compared with other values of Av for the entire nebulae and their exciting stars

    Eta carinae and the homunculus: far infrared/submillimetre spectral lines detected with the Herschel Space Observatory

    Get PDF
    The evolved massive binary star η Carinae underwent eruptive mass-loss events that formed the complex bi-polar ‘Homunculus’ nebula harbouring tens of solar masses of unusually nitrogen-rich gas and dust. Despite expectations for the presence of a significant molecular component to the gas, detections have been observationally challenged by limited access to the far-infrared and the intense thermal continuum. A spectral survey of the atomic and rotational molecular transitions was carried out with the Herschel Space Observatory, revealing a rich spectrum of broad emission lines originating in the ejecta. Velocity profiles of selected PACS lines correlate well with known substructures: H I in the central core; NH and weak [C II] within the Homunculus; and [N II] emissions in fast-moving structures external to the Homunculus. We have identified transitions from [O I], H I, and 18 separate light C- and O-bearing molecules including CO, CH, CH+, and OH, and a wide set of N-bearing molecules: NH, NH+, N2H+, NH2, NH3, HCN, HNC, CN, and N2H+. Half of these are new detections unprecedented for any early-type massive star environment. A very low ratio [12C/13C] ≤ 4 is estimated from five molecules and their isotopologues. We demonstrate that non-LTE effects due to the strong continuum are significant. Abundance patterns are consistent with line formation in regions of carbon and oxygen depletions with nitrogen enhancements, reflecting an evolved state of the erupting star with efficient transport of CNO-processed material to the outer layers. The results offer many opportunities for further observational and theoretical investigations of the molecular chemistry under extreme physical and chemical conditions around massive stars in their final stages of evolution

    Mid-infrared evolution of eta Carinae from 1968 to 2018

    Get PDF
    η Car is one of the most luminous and massive stars in our Galaxy and is the brightest mid-IR source in the sky outside our solar system. Since the late 1990s, the central source has dramatically brightened at UV and optical wavelengths. This might be explained by a decrease in circumstellar dust extinction. We aim to establish the mid-IR flux evolution and further our understanding of the star’s UV and optical brightening. Mid-IR images from 8−20 µm were obtained in 2018 with VISIR at the Very Large Telescope. Archival data from 2003 and 2005 were retrieved from the ESO Science Archive Facility, and historical records were collected from publications. We present mid-IR images of η Car with the highest angular resolution to date at the corresponding wavelengths (≥0.2200). We reconstruct the mid-IR evolution of the spectral energy distribution of the spatially integrated Homunculus nebula from 1968 to 2018 and find no long-term changes. The bolometric luminosity of η Car has been stable over the past five decades. We do not observe a long-term decrease in the mid-IR flux densities that could be associated with the brightening at UV and optical wavelengths, but circumstellar dust must be declining in our line of sight alone. Short-term flux variations within about 25% of the mean levels could be present

    Detection of high-velocity material from the wind-wind collision zone of Eta Carinae across the 2009.0 periastron passage

    Get PDF
    This is the author accepted manuscript. The final version is available from EDP Sciences via the DOI in this record.We report near-infrared spectroscopic observations of the Eta Carinae massive binary system during 2008–2009 using the CRIRES spectrograph mounted on the 8 m UT 1 Very Large Telescope (VLT Antu). We detect a strong, broad absorption wing in He i λ10833 extending up to -1900 km s-1 across the 2009.0 spectroscopic event. Analysis of archival Hubble Space Telescope/Space Telescope Imaging Spectrograph ultraviolet and optical data identifies a similar high-velocity absorption (up to -2100 km s-1) in the ultraviolet resonance lines of Si iv λλ1394, 1403 across the 2003.5 event. Ultraviolet resonance lines from low-ionization species, such as Si ii λλ1527, 1533 and C ii λλ1334, 1335, show absorption only up to -1200 km s-1, indicating that the absorption with velocities -1200 to -2100 km s-1 originates in a region markedly more rapidly moving and more ionized than the nominal wind of the primary star. Seeing-limited observations obtained at the 1.6 m OPD/LNA telescope during the last four spectroscopic cycles of Eta Carinae (1989–2009) also show high-velocity absorption in He i λ10833 during periastron. Based on the large OPD/LNA dataset, we determine that material with velocities more negative than -900 km s-1 is present in the phase range 0.976 ≤ ϕ ≤ 1.023 of the spectroscopic cycle, but absent in spectra taken at ϕ ≤ 0.94 and ϕ ≥ 1.049. Therefore, we constrain the duration of the high-velocity absorption to be 95 to 206 days (or 0.047 to 0.102 in phase). We propose that the high-velocity absorption component originates in shocked gas in the wind-wind collision zone, at distances of 15 to 45 AU in the line-of-sight to the primary star. With the aid of three-dimensional hydrodynamical simulations of the wind-wind collision zone, we find that the dense high-velocity gas is along the line-of-sight to the primary star only if the binary system is oriented in the sky such that the companion is behind the primary star during periastron, corresponding to a longitude of periastron of ω ~ 240°–270°. We study a possible tilt of the orbital plane relative to the Homunculus equatorial plane and conclude that our data are broadly consistent with orbital inclinations in the range i = 40°–60°.JHG thanks the Max-Planck-Gesellschaft for financial support for this work. AD and MT thanks the FAPESP foundation for continuous support. TIM is supported by a NASA GSRP fellowshi

    Non-thermal X-rays from colliding wind shock acceleration in the massive binary Eta Carinae

    Get PDF
    Cosmic-ray acceleration has been a long-standing mystery1,2 and, despite more than a century of study, we still do not have a complete census of acceleration mechanisms. The collision of strong stellar winds in massive binary systems creates powerful shocks that have been expected to produce high-energy cosmic rays through Fermi acceleration at the shock interface. The accelerated particles should collide with stellar photons or ambient material, producing non-thermal emission observable in X-rays and γ-rays3,4. The supermassive binary star Eta Carinae (η Car) drives the strongest colliding wind shock in the solar neighbourhood5,6. Observations with non-focusing high-energy observatories indicate a high-energy source near η Car, but have been unable to conclusively identify η Car as the source because of their relatively poor angular resolution7,8,9. Here we present direct focussing observations of the non-thermal source in the extremely hard X-ray band, which is found to be spatially coincident with the star within several arc-seconds. These observations show that the source of non-thermal X-rays varies with the orbital phase of the binary, and that the photon index of the emission is similar to that derived through analysis of the γ-ray spectrum. This is conclusive evidence that the high-energy emission indeed originates from non-thermal particles accelerated at colliding wind shocks

    Eta Carinae -- Physics of the Inner Ejecta

    Full text link
    Eta Carinae's inner ejecta are dominated observationally by the bright Weigelt blobs and their famously rich spectra of nebular emission and absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000 to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0) gas. Located within 1000 AU of the central star, they contain heavily CNO-processed material that was ejected from the star about a century ago. Outside the blobs, the inner ejecta include absorption-line clouds with similar conditions, plus emission-line gas that has generally lower densities and a wider range of speeds (reaching a few hundred km/s) compared to the blobs. The blobs appear to contain a negligible amount of dust and have a nearly dust-free view of the central source, but our view across the inner ejecta is severely affected by uncertain amounts of dust having a patchy distribution in the foreground. Emission lines from the inner ejecta are powered by photoionization and fluorescent processes. The variable nature of this emission, occurring in a 5.54 yr event cycle, requires specific changes to the incident flux that hold important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Population‐based cohort study of outcomes following cholecystectomy for benign gallbladder diseases

    Get PDF
    Background The aim was to describe the management of benign gallbladder disease and identify characteristics associated with all‐cause 30‐day readmissions and complications in a prospective population‐based cohort. Methods Data were collected on consecutive patients undergoing cholecystectomy in acute UK and Irish hospitals between 1 March and 1 May 2014. Potential explanatory variables influencing all‐cause 30‐day readmissions and complications were analysed by means of multilevel, multivariable logistic regression modelling using a two‐level hierarchical structure with patients (level 1) nested within hospitals (level 2). Results Data were collected on 8909 patients undergoing cholecystectomy from 167 hospitals. Some 1451 cholecystectomies (16·3 per cent) were performed as an emergency, 4165 (46·8 per cent) as elective operations, and 3293 patients (37·0 per cent) had had at least one previous emergency admission, but had surgery on a delayed basis. The readmission and complication rates at 30 days were 7·1 per cent (633 of 8909) and 10·8 per cent (962 of 8909) respectively. Both readmissions and complications were independently associated with increasing ASA fitness grade, duration of surgery, and increasing numbers of emergency admissions with gallbladder disease before cholecystectomy. No identifiable hospital characteristics were linked to readmissions and complications. Conclusion Readmissions and complications following cholecystectomy are common and associated with patient and disease characteristics

    Medicinal plants – prophylactic and therapeutic options for gastrointestinal and respiratory diseases in calves and piglets? A systematic review

    Full text link

    Metastable hydrogen absorption in ejecta close to eta Carinae

    No full text
    Spectroscopy with the high spatial resolution of the Hubble Space Telescope (HST) reveals narrow absorption in the hydrogen Balmer lines in spectra of Eta Carinae and the nearby nebular-scattered starlight. While hydrogen Balmer absorption lines are seen in stellar photospheres and winds, we are not aware of such being seen in galactic nebulae. This exceptional case is caused by intense stellar UV radiation acting on high-density neutral clumps of gas in the close vicinity of the central source. The interaction of the UV radiation with hydrogen results in photo-ionization and photo-excitation leading to a non-equilibrium population of the metastable 2s S-2 level. This occurs throughout the equatorial region surrounding eta Carinae in sufficient quantity to produce strong narrow absorption on top of the broad P Cygni emission profile. This absorption can be considered to be a probe of the very non-uniform ejecta in the disk region surrounding eta Carinae
    corecore