5 research outputs found

    The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell-mediated resistance to metastasis

    Get PDF
    Fondazione Cariplo (grant no. 2015–0564 to A.M.)Cluster Alisei (grant no. MEDINTECH CTN01_00177_962865 to A.M.)European Research Council (grant no. 669415-PHII to A.M.)Italian Association for Cancer Research (AIRC IG-2016 grant no. 19014 to A.M.; AIRC 5 × 1000 grant no. 21147 to A.M.; AIRC IG-2016 grant no. 19213 to M.L.)Medical Research Council (Pathobiology of Early Arthritis Cohort grant no. 36661 to C.P.)Arthritis Research UK Experimental Treatment Centre (grant no. 20022 to C.P.

    The macrophage tetraspan MS4A4A enhances dectin-1-dependent NK cell–mediated resistance to metastasis

    No full text
    The plasma membrane tetraspan molecule MS4A4A is selectively expressed by macrophage-lineage cells, but its function is unknown. Here we report that MS4A4A was restricted to murine and human mononuclear phagocytes and was induced during monocyte-to-macrophage differentiation in the presence of interleukin 4 or dexamethasone. Human MS4A4A was co-expressed with M2/M2-like molecules in subsets of normal tissue-resident macrophages, infiltrating macrophages from inflamed synovium and tumor-associated macrophages. MS4A4A interacted and colocalized with the β-glucan receptor dectin-1 in lipid rafts. In response to dectin-1 ligands, Ms4a4a-deficient macrophages showed defective signaling and defective production of effector molecules. In experimental models of tumor progression and metastasis, Ms4a4a deficiency in macrophages had no impact on primary tumor growth, but was essential for dectin-1-mediated activation of macrophages and natural killer (NK) cell–mediated metastasis control. Thus, MS4A4A is a tetraspan molecule selectively expressed in macrophages during differentiation and polarization, essential for dectin-1-dependent activation of NK cell–mediated resistance to metastasis

    Monocyte–macrophage polarization and recruitment pathways in the tumour microenvironment of B-cell acute lymphoblastic leukaemia

    No full text
    B-cell acute lymphoblastic leukaemia (B-ALL) reprograms the surrounding bone marrow (BM) stroma to create a leukaemia-supportive niche. To elucidate the contribution of immune cells to the leukaemic microenvironment, we investigated the involvement of monocyte/macrophage compartments, as well as several recruitment pathways in B-ALL development. Immunohistochemistry analyses showed that CD68-expressing macrophages were increased in leukaemic BM biopsies, compared to controls and predominantly expressed the M2-like markers CD163 and CD206. Furthermore, the "non-classical" CD14+CD16++ monocyte subset, expressing high CX3CR1 levels, was significantly increased in B-ALL patients' peripheral blood. CX3CL1 was shown to be significantly upregulated in leukaemic BM plasma, thus providing an altered migratory pathway possibly guiding NC monocyte recruitment into the BM. Additionally, the monocyte/macrophage chemoattractant chemokine ligand 2 (CCL2) strongly increased in leukaemic BM plasma, possibly because of the interaction of leukaemic cells with mesenchymal stromal cells and vascular cells and due to a stimulatory effect of leukaemia-related inflammatory mediators. C5a, a macrophage chemoattractant and M2-polarizing factor, further appeared to be upregulated in the leukaemic BM, possibly as an effect of PTX3 decrease, that could unleash complement cascade activation. Overall, deregulated monocyte/macrophage compartments are part of the extensive BM microenvironment remodelling at B-ALL diagnosis and could represent valuable targets for novel treatments to be coupled with classical chemotherapy
    corecore