213 research outputs found

    Path Tracking Control for Autonomous Driving Applications

    Get PDF
    Autonomous or self-driving vehicles are becoming a consolidate reality that involves both industrial and academic elds also for its impact in social and governmental communities, well far from automotive engineering. The intent of the present paper is to design an automatic steering control for an autonomous vehicle equipped with steer-by-wire and drive-by-wire technologies. The steering action is calculated to let the vehicle follow a reference path which is stored in a Digital Map properly built to be available in real-time. A Proportional + Derivative (PD) control strategy is deigned based on the Parameter State Approach (PSA) and it is coupled with a Feedforward (FF) term for improving the path tracking control in cornering maneuvers. Some experimental results are shown to demonstrates the ecacy of the controller presented

    Electron and hole states in quantum-dot quantum wells within a spherical 8-band model

    Get PDF
    In order to study heterostructures composed both of materials with strongly different parameters and of materials with narrow band gaps, we have developed an approach, which combines the spherical 8-band effective-mass Hamiltonian and the Burt's envelope function representation. Using this method, electron and hole states are calculated in CdS/HgS/CdS/H_2O and CdTe/HgTe/CdTe/H_2O quantum-dot quantum-well heterostructures. Radial components of the wave functions of the lowest S and P electron and hole states in typical quantum-dot quantum wells (QDQWs) are presented as a function of radius. The 6-band-hole components of the radial wave functions of an electron in the 8-band model have amplitudes comparable with the amplitude of the corresponding 2-band-electron component. This is a consequence of the coupling between the conduction and valence bands, which gives a strong nonparabolicity of the conduction band. At the same time, the 2-band-electron component of the radial wave functions of a hole in the 8-band model is small compared with the amplitudes of the corresponding 6-band-hole components. It is shown that in the CdS/HgS/CdS/H_2O QDQW holes in the lowest states are strongly localized in the well region (HgS). On the contrary, electrons in this QDQW and both electron and holes in the CdTe/HgTe/CdTe/H_2O QDQW are distributed through the entire dot. The importance of the developed theory for QDQWs is proven by the fact that in contrast to our rigorous 8-band model, there appear spurious states within the commonly used symmetrized 8-band model.Comment: 15 pages, 5 figures, E-mail addresses: [email protected], [email protected]

    GAD1 Upregulation Programs Aggressive Features of Cancer Cell Metabolism in the Brain Metastatic Microenvironment

    Get PDF
    The impact of altered amino acid metabolism on cancer progression is not fully understood. We hypothesized that a metabolic transcriptome shift during metastatic evolution is crucial for brain metastasis. Here, we report a powerful impact in this setting caused by epigenetic upregulation of glutamate decarboxylase 1 (GAD1), a regulator of the GABA neurotransmitter metabolic pathway. In cell-based culture and brain metastasis models, we found that downregulation of the DNA methyltransferase DNMT1 induced by the brain microenvironment-derived clusterin resulted in decreased GAD1 promoter methylation and subsequent upregulation of GAD1 expression in brain metastatic tumor cells. In a system to dynamically visualize cellular metabolic responses mediated by GAD1, we monitored the cytosolic NADH:NAD+ equilibrium in tumor cells. Reducing GAD1 in metastatic cells by primary glia cell coculture abolished the capacity of metastatic cells to utilize extracellular glutamine, leading to cytosolic accumulation of NADH and increased oxidative status. Similarly, genetic or pharmacologic disruption of the GABA metabolic pathway decreased the incidence of brain metastasis in vivo Taken together, our results show how epigenetic changes in GAD1 expression alter local glutamate metabolism in the brain metastatic microenvironment, contributing to a metabolic adaption that facilitates metastasis outgrowth in that setting

    Rationales, design and recruitment for the Elfe longitudinal study

    Get PDF
    Background Many factors act simultaneously in childhood to influence health status, life chances and well being, including pre-birth influences, the environmental pollutants of early life, health status but also the social influences of family and school. A cohort study is needed to disentangle these influences and explore attribution. Methods Elfe will be a nationally representative cohort of 20 000 children followed from birth to adulthood using a multidisciplinary approach. The cohort will be based on the INSEE Permanent Demographic Panel (EDP) established using census data and civil records. The sample size has been defined in order to match the representativeness criteria and to obtain some prevalence estimation, but also to address the research area of low exposure/rare effects. The cohort will be based on repeated surveys by face to face or phone interview (at birth and each year) as well as medical interview (at 2 years) and examination (at 6 years). Furthermore, biological samples will be taken at birth to evaluate the foetal exposition to toxic substances, environmental sensors will be placed in the child's homes. Pilot studies have been initiated in 2007 (500 children) with an overall acceptance rate of 55% and are currently under progress, the 2-year survey being carried out in October this year. Discussion The longitudinal study will provide a unique source of data to analyse the development of children in their environment, to study the various factors interacting throughout the life course up to adulthood and to determine the impact of childhood experience on the individual's physical, psychological, social and professional development

    Predicted risks of radiogenic cardiac toxicity in two pediatric patients undergoing photon or proton radiotherapy

    Get PDF
    BACKGROUND: Hodgkin disease (HD) and medulloblastoma (MB) are common malignancies found in children and young adults, and radiotherapy is part of the standard treatment. It was reported that these patients who received radiation therapy have an increased risk of cardiovascular late effects. We compared the predicted risk of developing radiogenic cardiac toxicity after photon versus proton radiotherapies for a pediatric patient with HD and a pediatric patient with MB. METHODS: In the treatment plans, each patient’s heart was contoured in fine detail, including substructures of the pericardium and myocardium. Risk calculations took into account both therapeutic and stray radiation doses. We calculated the relative risk (RR) of cardiac toxicity using a linear risk model and the normal tissue complication probability (NTCP) values using relative seriality and Lyman models. Uncertainty analyses were also performed. RESULTS: The RR values of cardiac toxicity for the HD patient were 7.27 (proton) and 8.37 (photon), respectively; the RR values for the MB patient were 1.28 (proton) and 8.39 (photon), respectively. The predicted NTCP values for the HD patient were 2.17% (proton) and 2.67% (photon) for the myocardium, and were 2.11% (proton) and 1.92% (photon) for the whole heart. The predicted ratios of NTCP values (proton/photon) for the MB patient were much less than unity. Uncertainty analyses revealed that the predicted ratio of risk between proton and photon therapies was sensitive to uncertainties in the NTCP model parameters and the mean radiation weighting factor for neutrons, but was not sensitive to heart structure contours. The qualitative findings of the study were not sensitive to uncertainties in these factors. CONCLUSIONS: We conclude that proton and photon radiotherapies confer similar predicted risks of cardiac toxicity for the HD patient in this study, and that proton therapy reduced the predicted risk for the MB patient in this study

    Diurnal Rhythms in Neurexins Transcripts and Inhibitory/Excitatory Synapse Scaffold Proteins in the Biological Clock

    Get PDF
    The neurexin genes (NRXN1/2/3) encode two families (α and β) of highly polymorphic presynaptic proteins that are involved in excitatory/inhibitory synaptic balance. Recent studies indicate that neuronal activation and memory formation affect NRXN1/2/3α expression and alternative splicing at splice sites 3 and 4 (SS#3/SS#4). Neurons in the biological clock residing in the suprachiasmatic nuclei of the hypothalamus (SCN) act as self-sustained oscillators, generating rhythms in gene expression and electrical activity, to entrain circadian bodily rhythms to the 24 hours day/night cycles. Cell autonomous oscillations in NRXN1/2/3α expression and SS#3/SS#4 exons splicing and their links to rhythms in excitatory/inhibitory synaptic balance in the circadian clock were explored. NRXN1/2/3α expression and SS#3/SS#4 splicing, levels of neurexin-2α and the synaptic scaffolding proteins PSD-95 and gephyrin (representing excitatory and inhibitory synapses, respectively) were studied in mRNA and protein extracts obtained from SCN of C3H/J mice at different times of the 24 hours day/night cycle. Further studies explored the circadian oscillations in these components and causality relationships in immortalized rat SCN2.2 cells. Diurnal rhythms in mNRXN1α and mNRXN2α transcription, SS#3/SS#4 exon-inclusion and PSD-95 gephyrin and neurexin-2α levels were found in the SCN in vivo. No such rhythms were found with mNRXN3α. SCN2.2 cells also exhibited autonomous circadian rhythms in rNRXN1/2 expression SS#3/SS#4 exon inclusion and PSD-95, gephyrin and neurexin-2α levels. rNRXN3α and rNRXN1/2β were not expressed. Causal relationships were demonstrated, by use of specific siRNAs, between rNRXN2α SS#3 exon included transcripts and gephyrin levels in the SCN2.2 cells. These results show for the first time dynamic, cell autonomous, diurnal rhythms in expression and splicing of NRXN1/2 and subsequent effects on the expression of neurexin-2α and postsynaptic scaffolding proteins in SCN across the 24-h cycle. NRXNs gene transcripts may have a role in coupling the circadian clock to diurnal rhythms in excitatory/inhibitory synaptic balance

    Constant light enhances synchrony among circadian clock cells and promotes behavioral rhythms in VPAC(2)-signaling deficient mice

    Get PDF
    Individual neurons in the suprachiasmatic nuclei (SCN) contain an intracellular molecular clock and use intercellular signaling to synchronize their timekeeping activities so that the SCN can coordinate brain physiology and behavior. The neuropeptide vasoactive intestinal polypeptide (VIP) and its VPAC2 receptor form a key component of intercellular signaling systems in the SCN and critically control cellular coupling. Targeted mutations in either the intracellular clock or intercellular neuropeptide signaling mechanisms, such as VIP-VPAC2 signaling, can lead to desynchronization of SCN neuronal clocks and loss of behavioral rhythms. An important goal in chronobiology is to develop interventions to correct deficiencies in circadian timekeeping. Here we show that extended exposure to constant light promotes synchrony among SCN clock cells and the expression of ~24 h rhythms in behavior in mice in which intercellular signaling is disrupted through loss of VIP-VPAC2 signaling. This study highlights the importance of SCN synchrony for the expression of rhythms in behavior and reveals how non-invasive manipulations in the external environment can be used to overcome neurochemical communication deficits in this important brain system
    corecore