173 research outputs found
Propagation of generalized vector Helmholtz-Gauss beams through paraxial optical systems
We introduce the generalized vector Helmholtz-Gauss (gVHzG) beams that constitute a general family of localized beam solutions of the Maxwell equations in the paraxial domain. The propagation of the electromagnetic components through axisymmetric ABCD optical systems is expressed elegantly in a coordinate-free and closed-form expression that is fully characterized by the transformation of two independent complex beam parameters. The transverse mathematical structure of the gVHzG beams is form-invariant under paraxial transformations. Any paraxial beam with the same waist size and transverse spatial frequency can be expressed as a superposition of gVHzG beams with the appropriate weight factors. This formalism can be straightforwardly applied to propagate vector Bessel-Gauss, Mathieu-Gauss, and Parabolic-Gauss beams, among others
From the Characterization of Ranging Error to the Enhancement of Nodes Localization for Group of Wireless Body Area Networks
International audienceTime-based localization in Wireless Body Area Networks (WBANs), has attracted growing research interest for the last past years. Nodes positions can be estimated based on peer-to-peer radio transactions between devices. Indeed, the accuracy of the localization process could be highly affected by different factors , such as the WBAN channels where the signal is propagating through, as well as the nodes mobility that bias the peer-to-peer range estimation, and thus, the final achieved localization accuracy. The goal of this paper consists in characterizing the impact of mobility and WBAN channel on the ranging and localization estimation, based on real mobility traces acquired through a motion capture system. More specifically, the ranging error is evaluated over all the WBANs links (i.e. on-body, off-body and body-to-body links), while an impulse Radio Ultra-Wideband (IR-UWB) physical layer, as well as a TDMA-based Medium Access Control (MAC) are playing on. The simulation results show that the range measurement error can be modeled as a Gaussian distribution. To deal with the gaus-sianity observation of ranging error and to provide high positioning accuracy, an adjustable extended Kalman Filter (EKF) is proposed
Quantifying the impact of scheduling and mobility on IR-UWB localization in body area networks
International audience—In the context of radiolocation in Wireless Body Area Networks (WBANs), nodes positions can be estimated through time-based ranging algorithms. For instance, the distance separating a couple of nodes can be estimated accurately by measuring the Round Trip Time of Flight of an Impulse Radio Ultra Wideband (IR-UWB) link. This measure usually relies on two or three messages transactions. Such exchanges take time and a rapid mobility of the nodes can reduce the ranging accuracy and consequently impact nodes localization process. In this paper, we quantify this localization error by confronting two broadcast-based optimized implementations of the three-way ranging algorithm with real mobility traces, acquired through a motion capture system. We then evaluate, in the same scenarios, the impact of the MAC-level scheduling of the packets within a TDMA frame localization accuracy. The results, obtained with the WSNet simulator, show that MAC scheduling can be utilized to mitigate the effect of nodes mobility
Recommended from our members
Experimental observation of vortex rings in a bulk magnet
Vortex rings are remarkably stable structures occurring in numerous systems:
for example in turbulent gases, where they are at the origin of weather
phenomena [1]; in fluids with implications for biology [2]; in electromagnetic
discharges [3]; and in plasmas [4]. While vortex rings have also been predicted
to exist in ferromagnets [5], they have not yet been observed. Using X-ray
magnetic nanotomography [6], we imaged three-dimensional structures forming
closed loops in a bulk micromagnet, each composed of a vortex-antivortex pair.
Based on the magnetic vorticity, a quantity analogous to hydrodynamic
vorticity, we identify these configurations as magnetic vortex rings. While
such structures have been predicted to exist as transient states in exchange
ferromagnets [5], the vortex rings we observe exist as stable, static
configurations, whose stability we attribute to the dipolar interaction. In
addition, we observe stable vortex loops intersected by magnetic singularities
[7], at which the magnetisation within the vortex and antivortex cores
reverses. We gain insight into the stability of these states through field and
thermal equilibration protocols. These measurements pave the way for the
observation of complex three-dimensional solitons in bulk magnets, as well as
for the development of applications based on three-dimensional magnetic
structures
Hard X-ray grazing incidence ptychography: Large field-of-view nanostructure imaging with ultra-high surface sensitivity
We demonstrate a technique that allows highly surface sensitive imaging of
nanostructures on planar surfaces over large areas, providing a new avenue for
research in materials science, especially for \textit{in situ} applications.
The capabilities of hard X-ray grazing incidence ptychography combine aspects
from imaging, reflectometry and grazing incidence small angle scattering in
providing large field-of-view images with high resolution transverse to the
beam, horizontally and along the surface normal. Thus, it yields data with
resolutions approaching electron microscopy, in two dimensions, but over much
larger areas and with a poorer resolution in the third spatial dimension, along
the beam propagation direction. Similar to grazing incidence small angle X-ray
scattering, this technique facilitates the characterization of nanostructures
across statistically significant surface areas or volumes within potentially
feasible time frames for \textit{in situ} experiments, while also providing
spatial information.Comment: 8 pages, 6 figure
A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts
Since its commercial introduction three-quarters of a century ago, fluid catalytic cracking has been one of the most important conversion processes in the petroleum industry. In this process, porous composites composed of zeolite and clay crack the heavy fractions in crude oil into transportation fuel and petrochemical feedstocks. Yet, over time the catalytic activity of these composite particles decreases. Here, we report on ptychographic tomography, diffraction, and fluorescence tomography, as well as electron microscopy measurements, which elucidate the structural changes that lead to catalyst deactivation. In combination, these measurements reveal zeolite amorphization and distinct structural changes on the particle exterior as the driving forces behind catalyst deactivation. Amorphization of zeolites, in particular, close to the particle exterior, results in a reduction of catalytic capacity. A concretion of the outermost particle layer into a dense amorphous silica–alumina shell further reduces the mass transport to the active sites within the composite
SAXS imaging reveals optimized osseointegration properties of bioengineered oriented 3D-PLGA/aCaP scaffolds in a critical size bone defect model
Healing large bone defects remains challenging in orthopedic surgery and is often associated with poor outcomes and complications. A major issue with bioengineered constructs is achieving a continuous interface between host bone and graft to enhance biological processes and mechanical stability. In this study, we have developed a new bioengineering strategy to produce oriented biocompatible 3D PLGA/aCaP nanocomposites with enhanced osseointegration. Decellularized scaffolds -containing only extracellular matrix- or scaffolds seeded with adipose-derived mesenchymal stromal cells were tested in a mouse model for critical size bone defects. In parallel to micro-CT analysis, SAXS tensor tomography and 2D scanning SAXS were employed to determine the 3D arrangement and nanostructure within the critical-sized bone. Both newly developed scaffold types, seeded with cells or decellularized, showed high osseointegration, higher bone quality, increased alignment of collagen fibers and optimal alignment and size of hydroxyapatite minerals
Investigation of magnetic droplet solitons using x-ray holography with extended references
A dissipative magnetic soliton, or magnetic droplet, is a structure that has been predicted to exist within a thin magnetic layer when non-linearity is balanced by dispersion, and a driving force counteracts the inherent damping of the spin precession. Such a soliton can be formed beneath a nano-contact (NC) that delivers a large spin-polarized current density into a magnetic layer with perpendicular magnetic anisotropy. Although the existence of droplets has been confirmed from electrical measurements and by micromagnetic simulations, only a few attempts have been made to directly observe the magnetic landscape that sustains these structures, and then only for a restricted set of experimental parameter values. In this work we use and x-ray holography technique HERALDO, to image the magnetic structure of the [Co/Ni]x4 multilayer within a NC orthogonal pseudo spin-valve, for different range of magnetic fields and injected electric currents. The magnetic configuration imaged at −33 mA and 0.3 T for devices with 90 nm NC diameter reveals a structure that is within the range of current where the droplet soliton exist based on our electrical measurements and have it is consistent with the expected size of the droplet (∼100 nm diameter) and its spatial position within the sample. We also report the magnetisation configurations observed at lower DC currents in the presence of fields (0–50 mT), where it is expected to observe regimes of the unstable droplet formation
- …