256 research outputs found
A novel tension monitoring device of multi-rope friction hoister by using acoustic filtering sensor
Wire rope tension is one of the vital monitoring parameters for the hoister system, which seriously influence mine coal safety production. However, wire ropes endure vibration and shock in lifting process of multi-rope friction hoisters in coal mine, which interferes with measurement of wire rope tension and lifting load seriously. Aimed to the difficulty of monitoring wire rope tension, this paper put forward a new measurement method of wire rope tension by transferring wire rope tension measurement to pressure measurement, which improves the measurement safety and avoids the safety hazards of adopting pull sensor in series with wire rope, and this paper also designed an acoustic filtering sensor which uses the filtering characteristic of acoustic cavity to eliminate the effect of vibration and shock in wire rope tension measurement. Meanwhile, a novel wire rope tension monitoring device of multi-rope friction hoister is presented based on the proposed measurement method and sensor, which can measure each wire rope tension in the lifting process, display the cage load and monitor the fault of wire rope tension unbalance. Real-time and accurate wire rope tension measurement is realized. By comparing the signals measured by the common sensor and the acoustic filtering sensor, the influence of vibration and shock on the multi-ropes tension measurement is eliminated, and the fault of wire rope tension unbalance can be monitored. This advanced tension monitoring device is of great significance to the safety of coal mine production
Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya
The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host
Fast automatic airport detection in remote sensing images using convolutional neural networks
Fast and automatic detection of airports from remote sensing images is useful for many military and civilian applications. In this paper, a fast automatic detection method is proposed to detect airports from remote sensing images based on convolutional neural networks using the Faster R-CNN algorithm. This method first applies a convolutional neural network to generate candidate airport regions. Based on the features extracted from these proposals, it then uses another convolutional neural network to perform airport detection. By taking the typical elongated linear geometric shape of airports into consideration, some specific improvements to the method are proposed. These approaches successfully improve the quality of positive samples and achieve a better accuracy in the final detection results. Experimental results on an airport dataset, Landsat 8 images, and a Gaofen-1 satellite scene demonstrate the effectiveness and efficiency of the proposed method
Variation of Anxiety and Depression During a 3-Year Period as Well as Their Risk Factors and Prognostic Value in Postoperative Bladder Cancer Patients
BackgroundAnxiety and depression are commonly recognized and prognostically relevant in cancer patients. The aim of this study was to explore the 3-year longitudinal changes in anxiety and depression, their risk factors, and prognostic value in patients with bladder cancer.MethodsHospital Anxiety and Depression Scale for anxiety (HADS-A) and depression (HADS-D) scores of 120 postoperative bladder cancer patients and 100 healthy controls (HCs) were assessed. Additionally, the HADS-A and HADS-D scores of bladder cancer patients were determined at 1 year, 2 years, and 3 years post surgery.ResultsHADS-A score (7.7 ± 3.0 vs. 4.8 ± 2.6), anxiety rate (38.3% vs. 9.0%), HADS-D score (7.7 ± 3.3 vs. 4.3 ± 2.6), depression rate (40.0% vs. 11.0%), as well as anxiety degree and depression degree, were all increased in bladder cancer patients compared with HCs (all P < 0.001). Besides, the HADS-A score gradually increased from baseline to 3 years (P = 0.004), while the anxiety rate, HADS-D score, and depression rate did not change significantly (all P > 0.050). Gender, tumor size, marriage status, hypertension, diversity, and lymph node (LN) metastasis were associated with anxiety or depression in patients with bladder cancer (all P < 0.050). Anxiety was associated with shortened overall survival (OS) (P = 0.024) but did not link with disease-free survival (DFS) (P = 0.201); depression was not correlated with either DFS or OS (both P > 0.050).ConclusionThe prevalence and severity of anxiety and depression are high in patients with bladder cancer, which are influenced by gender, tumor features, marriage status, and hypertension; in addition, their correlation with survival is relatively weak
Time-response-histogram-based feature of magnetic barkhausen noise for material characterization considering influences of grain and grain boundary under in situ tensile test
Stress is the crucial factor of ferromagnetic material failure origin. However, the non-destructive test methods to analyze the ferromagnetic material properties’ inhomogeneity on the microscopic scale with stress have not been obtained so far. In this study, magnetic Barkhausen noise (MBN) signals on different silicon steel sheet locations under in situ tensile tests were detected by a high-spatial-resolution magnetic probe. The domain-wall (DW) motion, grain, and grain boundary were detected using a magneto-optical Kerr (MOKE) image. The time characteristic of DW motion and MBN signals on different locations was varied during elastic deformation. Therefore, a time-response histogram is proposed in this work to show different DW motions inside the grain and around the grain boundary under low tensile stress. In order to separate the variation of magnetic properties affected by the grain and grain boundary under low tensile stress corresponding to MBN excitation, time-division was carried out to extract the root-mean-square (RMS), mean, and peak in the optimized time interval. The time-response histogram of MBN evaluated the silicon steel sheet’s inhomogeneous material properties, and provided a theoretical and experimental reference for ferromagnetic material properties under stress
Anopheles sinensis mosquito insecticide resistance: comparison of three mosquito sample collection and preparation methods and mosquito age in resistance measurements
BACKGROUND: Insecticide resistance monitoring in malaria mosquitoes is essential for guiding the rational use of insecticides in vector control programs. Resistance bioassay is the first step for insecticide monitoring and it lays an important foundation for molecular examination of resistance mechanisms. In the literature, various mosquito sample collection and preparation methods have been used, but how mosquito sample collection and preparation methods affect insecticide susceptibility bioassay results is largely unknown. The objectives of this study were to determine whether mosquito sample collection and preparation methods affected bioassay results, which may cause incorrect classification of mosquito resistance status. METHODS: The study was conducted in Anopheles sinensis mosquitoes in two study sites in central China. Three mosquito sample collection and preparation methods were compared for insecticide susceptibility, kdr frequencies and metabolic enzyme activities: 1) adult mosquitoes collected from the field; 2) F1 adults from field collected, blood-fed mosquitoes; and 3) adult mosquitoes reared from field collected larvae. RESULTS: Mosquito sample collection and preparation methods significantly affected mortality rates in the standard WHO tube resistance bioassay. Mortality rate of field-collected female adults was 10-15% higher than in mosquitoes reared from field-collected larvae and F1 adults from field collected blood-fed females. This pattern was consistent in mosquitoes from the two study sites. High kdr mutation frequency (85-95%) with L1014F allele as the predominant mutation was found in our study populations. Field-collected female adults consistently exhibited the highest monooxygenase and GST activities. The higher mortality rate observed in the field-collected female mosquitoes may have been caused by a mixture of mosquitoes of different ages, as older mosquitoes were more susceptible to deltamethrin than younger mosquitoes. CONCLUSIONS: Female adults reared from field-collected larvae in resistance bioassays are recommended to minimize the effect of confounding factors such as mosquito age and blood feeding status so that more reliable and reproducible mortality may be obtained
A systematic review and meta-analysis of e-Mental Health interventions to treat symptoms of post-traumatic stress
Quality control of RNA-seq data: Box Plot of transcript quantification levels. The distributions of FPKM scores across samples are visualized. (PDF 130 kb
Recommended from our members
KIF21A Mutations in Two Chinese Families with Congenital Fibrosis of the Extraocular Muscles (CFEOM)
Purpose: Two Chinese families (XT and YT) with congenital fibrosis of the extraocular muscles (CFEOM) were identified. The purpose of this study was to determine if previously described Homo sapiens kinesin family member 21A (KIF21A) mutations were responsible for CFEOM in these two Chinese pedigrees. Methods: Clinical characterization and genetic studies were performed. Microsatellite genotyping for linkage to the CFEOM1 and CFEOM3 loci was performed. The probands were screened for KIF21A mutations by bidirectional direct sequencing. Once a mutation was detected in the proband, all other participating family members and 100 unrelated control normal individuals were screened for the mutation. Results: All affected individuals in family XT shared the common manifestations of CFEOM1. Family YT had two affected individuals, a mother and a daughter. The daughter had CFEOM1, while her mother never had congential ptosis but did have limited extraocular movements status post strabismus surgery. Haplotype analysis revealed that pedigree XT was linked to the 12q CFEOM1 locus and the affected memberes harbored the second most common missense mutation in KIF21A (2,861G>A, R954Q). Family YT harbored the most common missense de novo mutation in KIF21A (2,860C>T, R954W). Both of these mutations have been previously described. Conclusions: The observation of these two KIF21A mutations in a Chinese pedigree underscores the homogeneity of these mutations as a cause of CFEOM1 and CFEOM3 across ethnic divisions
- …