116 research outputs found

    Exceptionally Strong Effect of Small Structural Variations in Functionalized 3,4-Phenylenedioxythiophenes on the Surface Nanostructure and Parahydrophobic Properties of Their Electropolymerized Films

    Full text link
    Electropolymerization of electron-rich aromatics/heteroaromatics to form conducting polymers is an easy and powerful technique to form surfaces of different nanostructures and hydrophobicity/wettability. Understanding the factors governing the growth of the polymer nanostructures and controlling the surface morphology are the big challenges for the surface and materials science. In this paper, we report the design and synthesis of a series of 3,4-phenylenedioxythiophenes (PheDOTs) substituted at the benzene ring with 2-naphthylmethyl-, 1-naphthylmethyl-, and 9-anthracenylmethyl-groups (2Na-PheDOT, 1Na-PheDOT, and 9Ant-PheDOT). They have been electropolymerized in either potentiostatic or potentiodynamic conditions to form the polymer surfaces of different morphologies. Even small changes in the structure of PheDOT monomers by varying the side groups (2-/1-naphthyl-or 9-anthracenyl-) result in the formation of very different polymer surface nanostructures: From monodirectionally growing (one-dimensional) vertically aligned nanotubes for 2Na-PheDOT to ribbonlike nanostructures (two-dimensional) for 1Na-PheDOT, and a mixture of these two structures for 9Ant-PheDOT. Moreover, the surfaces of the p[2Na-PheDOT] polymer, electrodeposited from the monomer 2Na-PheDOT and the dimer (2Na-PheDOT)2 (which have different solubilities and the reactivities on electropolymerization, but formally lead to the polymer of the same chemical structure), show very different nanostructures. In contrast to 2Na-PheDOT, which forms vertically aligned nanotubes of the polymer on the surface, the polymerization of (2Na-PheDOT)2 leads to spherical particles [three-dimensional (3D)] when Bu4NClO4 is used as an electrolyte and a membrane structure with spherical holes (3D) in the case of more hydrophobic Bu4NPF6. The importance of water for gas bubble formation (O2 and H2) during electropolymerization and creation of the surface nanostructures has been demonstrated and discussed. The formation of these different nanostructures is accompanied by different wettability of the surface, from hydrophilic (with an apparent water droplet contact angle of θw ∼40-70°) to highly hydrophobic (θw up to 129-134°). The sticky, parahydrophobic surface formed from 1Na-PheDOT showed high adhesion to water, with no water droplets moving after inclination of the surface to 90° (rose-petal effect). Copyright © 2019 American Chemical Society.Government Council on Grants, Russian FederationThe authors thank the Center Commun de Microscopie Appliquée (CCMA, Univ. Nice Sophia Antipolis) for the realization of the SEM images. E.L.K. thanks the Russia President Ph.D. Scholarship for studying abroad to visit Bangor University and also thanks Act 211 Government of the Russian Federation for financial support (contract No. 02.A03.21.0006). I.S. thanks the Erasmus+ student mobility program for supporting her internship at Bangor University. I.F.P. thanks SIFE-NPU for generous startup funding

    Synthesis and Properties New Derivatives of 3,4-Phenylenedioxythiophene

    Full text link
    This work was supported by the Russian President PhD Scholarship for studying abroad and by an Act 211 Government of the Russian Federation for financial support (contract No 02.A03.21.0006)

    A large-scale study of the random variability of a coding sequence: a study on the CFTR gene

    Get PDF
    Coding single nucleotide substitutions (cSNSs) have been studied on hundreds of genes using small samples (ngapproximate to100-150 genes). In the present investigation, a large random European population sample (average ngapproximate to1500) was studied for a single gene, the CFTR ( Cystic Fibrosis Transmembrane conductance Regulator). The nonsynonymous (NS) substitutions exhibited, in accordance with previous reports, a mean probability of being polymorphic (q>0.005), much lower than that of the synonymous ( S) substitutions, but they showed a similar rate of subpolymorphic (q<0.005) variability. This indicates that, in autosomal genes that may have harmful recessive alleles (nonduplicated genes with important functions), genetic drift overwhelms selection in the subpolymorphic range of variability, making disadvantageous alleles behave as neutral. These results imply that the majority of the subpolymorphic nonsynonymous alleles of these genes are selectively negative or even pathogenic

    Large genomic rearrangements in the CFTR gene contribute to CBAVD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>By performing extensive scanning of whole coding and flanking sequences of the <it>CFTR (Cystic Fibrosis Transmembrane Conductance Regulator</it>) gene, we had previously identified point mutations in 167 out of 182 (91.7%) males with isolated congenital bilateral absence of the vas deferens (CBAVD). Conventional PCR-based methods of mutation analysis do not detect gross DNA lesions. In this study, we looked for large rearrangements within the whole <it>CFTR </it>locus in the 32 CBAVD patients with only one or no mutation.</p> <p>Methods</p> <p>We developed a semi-quantitative fluorescent PCR assay (SQF-PCR), which relies on the comparison of the fluorescent profiles of multiplex PCR fragments obtained from different DNA samples. We confirmed the gross alterations by junction fragment amplification and identified their breakpoints by direct sequencing.</p> <p>Results</p> <p>We detected two large genomic heterozygous deletions, one encompassing exon 2 (c.54-5811_c.164+2186del8108ins182) [or <it>CFTRdele2</it>], the other removing exons 22 to 24 (c.3964-3890_c.4443+3143del9454ins5) [or <it>CFTRdele 22_24</it>], in two males carrying a typical CBAVD mutation on the other parental <it>CFTR </it>allele. We present the first bioinformatic tool for exon phasing of the <it>CFTR </it>gene, which can help to rename the exons and the nomenclature of small mutations according to international recommendations and to predict the consequence of large rearrangements on the open reading frame.</p> <p>Conclusion</p> <p>Identification of large rearrangements further expands the <it>CFTR </it>mutational spectrum in CBAVD and should now be systematically investigated. We have designed a simple test to specifically detect the presence or absence of the two rearrangements identified in this study.</p

    Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach

    Full text link
    "This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp5037926.”The behavior of defect chalcopyrite CdAl2S4 at high pressures and ambient temperature has been investigated in a joint experimental and theoretical study. High-pressure X-ray diffraction and Raman scattering measurements were complemented with theoretical ab initio calculations. The equation of state and pressure dependences of the structural parameters of CdAl2S4 were determined and compared to those of other AB(2)X(4) ordered-vacancy compounds. The pressure dependence of the Raman-active mode frequencies is reported, as well as the theoretical phonon dispersion curves and phonon density of states at 1 atm. Our measurements suggest that defect chalcopyrite CdAl2S4 undergoes a phase transition above 15 GPa to a disordered-rocksalt structure, whose equation of state was also obtained up to 25 GPa. In a downstroke from 25 GPa to 1 atm, our measurements indicate that CdAl2S4 does not return to the defect chalcopyrite phase; it partially retains the disordered-rocksalt phase and partially transforms into the spinel structure. The nature of the spinel structure was confirmed by the good agreement of our experimental results with our theoretical calculations. All in all, our experimental and theoretical results provide evidence that the spinel and defect chalcopyrite phases of CdAl2S4 are competitive at 1 atm. This result opens the way to the synthesis of spinel-type CdAl2S4 at near-ambient conditions.Financial support from the Spanish Consolider Ingenio 2010 Program (Project CSD2007-00045) is acknowledged. This work was also supported by Spanish MICCIN under Project MAT2010-21270-C04-03/04 and by Vicerrectorado de Investigacion de la Universitat Politecnica de Valencia under Projects UPV2011-0914 PAID-05-11 and UPV2011-0966 PAID-06-11. Supercomputer time was provided by the Red Espanola de Supercomputacion (RES) and the MALTA cluster. J.A.S. acknowledges the Juan de la Cierva fellowship program for financial support. AM. and P.R.-H. acknowledge S. Munoz Rodriguez for providing a data-parsing application.Sans Tresserras, JÁ.; Santamaría Pérez, D.; Popescu, C.; Gomis, O.; Manjón Herrera, FJ.; Vilaplana Cerda, RI.; Muñoz, A.... (2014). Structural and vibrational properties of CdAl2S4 under high pressure: Experimental and theoretical approach. Journal of Physical Chemistry C. 118(28):15363-15374. https://doi.org/10.1021/jp5037926S15363153741182

    Low-surface energy surfactants with branched hydrocarbon architectures

    Get PDF
    International audienceSurface tensiometry and small-angle neutron scattering have been used to characterize a new class of low-surface energy surfactants (LSESs), "hedgehog" surfactants. These surfactants are based on highly branched hydrocarbon (HC) chains as replacements for environmentally hazardous fluorocarbon surfactants and polymers. Tensiometric analyses indicate that a subtle structural modification in the tails and headgroup results in significant effects on limiting surface tensions γcmc at the critical micelle concentration: a higher level of branching and an increased counterion size promote an effective reduction of surface tension to low values for HC surfactants (γcmc 24 mN m-1). These LSESs present a new class of potentially very important materials, which form lamellar aggregates in aqueous solutions independent of dilution
    corecore