62 research outputs found

    Knots in Charged Polymers

    Full text link
    The interplay of topological constraints and Coulomb interactions in static and dynamic properties of charged polymers is investigated by numerical simulations and scaling arguments. In the absence of screening, the long-range interaction localizes irreducible topological constraints into tight molecular knots, while composite constraints are factored and separated. Even when the forces are screened, tight knots may survive as local (or even global) equilibria, as long as the overall rigidity of the polymer is dominated by the Coulomb interactions. As entanglements involving tight knots are not easy to eliminate, their presence greatly influences the relaxation times of the system. In particular, we find that tight knots in open polymers are removed by diffusion along the chain, rather than by opening up. The knot diffusion coefficient actually decreases with its charge density, and for highly charged polymers the knot's position appears frozen.Comment: Revtex4, 9 pages, 9 eps figure

    Multinucleated Giant Cells’ Incidence, Immune Markers, and Significance: A Study of 172 Cases of Papillary Thyroid Carcinoma

    Get PDF
    Multinucleated giant cells (MGCs) are often detected in cases of papillary thyroid carcinoma (PTC). Their origin and significance, however, has not been established. One possibility is that they form in response to injury induced by fine needle aspiration biopsy (FNAB). Other hypotheses are that the chemically-altered colloid produced by PTC induces MGCs to act as colloidophages, or else MGCs are a non-specific immune response ingesting neoplastic follicle cells. We assigned 172 cases of PTC a semi-quantitative score for MGCs. Cases with “many” MGCs were immunohistochemically stained for AEI/AEIII, CD68, and CD163 to assess for epithelial vs histiocytic differentiation, and for thyroglobulin and TTF-1 to assess for MGC ingestion of colloid or thyroid follicle cells respectively. Overall, we identified MGCs in 100/172 (58.1%) PTC specimens; in 45 (26.2%), “many” MGCs were found, while in 55 (31.9%) MGCs were “few.” The mean sizes of PTC in cases with many as opposed to rare/no MGCs was 2.50 cm vs 1.8 [P = 0.003]. The cases of PTC with many MGCs had higher multifocality (26/45 vs 51/127 [P = 0.06]), extrathyroidal extension (21/45 vs 36/127 [P = 0.03]), and recurrence (8/45 vs 9/127 [P = 0.08]), than did cases with rare or no MGCs. The majority of patients both with and without numerous MGCs had previous histories of FNA or hemilobectomy: 40/45 and 99/127 respectively (P = 0.062). The majority of MGCs were positive for CD68 (45/45), CD163 (44/45), thyroglobulin (34/45) and negative for AEI/AEIII (44/45) and TTF-1 (44/45). These results indicate that MGCs in PTC are of histiocytic origin. Cases of PTC with many MGCs have a significantly greater likelihood of extrathyroidal extension and greater tumor size than cases with few/no MGCs. MGCs appear to be functioning largely as colloidophages

    Functional classification of proteins based on projection of amino acid sequences: application for prediction of protein kinase substrates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The knowledge about proteins with specific interaction capacity to the protein partners is very important for the modeling of cell signaling networks. However, the experimentally-derived data are sufficiently not complete for the reconstruction of signaling pathways. This problem can be solved by the network enrichment with predicted protein interactions. The previously published <it>in silico </it>method PAAS was applied for prediction of interactions between protein kinases and their substrates.</p> <p>Results</p> <p>We used the method for recognition of the protein classes defined by the interaction with the same protein partners. 1021 protein kinase substrates classified by 45 kinases were extracted from the Phospho.ELM database and used as a training set. The reasonable accuracy of prediction calculated by leave-one-out cross validation procedure was observed in the majority of kinase-specificity classes. The random multiple splitting of the studied set onto the test and training set had also led to satisfactory results. The kinase substrate specificity for 186 proteins extracted from TRANSPATH<sup>® </sup>database was predicted by PAAS method. Several kinase-substrate interactions described in this database were correctly predicted. Using the previously developed ExPlain™ system for the reconstruction of signal transduction pathways, we showed that addition of the newly predicted interactions enabled us to find the possible path between signal trigger, TNF-alpha, and its target genes in the cell.</p> <p>Conclusions</p> <p>It was shown that the predictions of protein kinase substrates by PAAS were suitable for the enrichment of signaling pathway networks and identification of the novel signaling pathways. The on-line version of PAAS for prediction of protein kinase substrates is freely available at <url>http://www.ibmc.msk.ru/PAAS/</url>.</p

    Small Interfering RNA against Transcription Factor STAT6 Leads to Increased Cholesterol Synthesis in Lung Cancer Cell Lines

    Get PDF
    STAT6 transcription factor has become a potential molecule for therapeutic intervention because it regulates broad range of cellular processes in a large variety of cell types. Although some target genes and interacting partners of STAT6 have been identified, its exact mechanism of action needs to be elucidated. In this study, we sought to further characterize the molecular interactions, networks, and functions of STAT6 by profiling the mRNA expression of STAT6 silenced human lung cells (NCI-H460) using microarrays. Our analysis revealed 273 differentially expressed genes after STAT6 silencing. Analysis of the gene expression data with Ingenuity Pathway Analysis (IPA) software revealed Gene expression, Cell death, Lipid metabolism as the functions associated with highest rated network. Cholesterol biosynthesis was among the most enriched pathways in IPA as well as in PANTHER analysis. These results have been validated by real-time PCR and cholesterol assay using scrambled siRNA as a negative control. Similar findings were also observed with human type II pulmonary alveolar epithelial cells, A549. In the present study we have, for the first time, shown the inverse relationship of STAT6 with the cholesterol biosynthesis in lung cancer cells. The present findings are potentially significant to advance the understanding and design of therapeutics for the pathological conditions where both STAT6 and cholesterol biosynthesis are implicated viz. asthma, atherosclerosis etc

    New Insight into the Colonization Processes of Common Voles: Inferences from Molecular and Fossil Evidence

    Get PDF
    Elucidating the colonization processes associated with Quaternary climatic cycles is important in order to understand the distribution of biodiversity and the evolutionary potential of temperate plant and animal species. In Europe, general evolutionary scenarios have been defined from genetic evidence. Recently, these scenarios have been challenged with genetic as well as fossil data. The origins of the modern distributions of most temperate plant and animal species could predate the Last Glacial Maximum. The glacial survival of such populations may have occurred in either southern (Mediterranean regions) and/or northern (Carpathians) refugia. Here, a phylogeographic analysis of a widespread European small mammal (Microtus arvalis) is conducted with a multidisciplinary approach. Genetic, fossil and ecological traits are used to assess the evolutionary history of this vole. Regardless of whether the European distribution of the five previously identified evolutionary lineages is corroborated, this combined analysis brings to light several colonization processes of M. arvalis. The species' dispersal was relatively gradual with glacial survival in small favourable habitats in Western Europe (from Germany to Spain) while in the rest of Europe, because of periglacial conditions, dispersal was less regular with bottleneck events followed by postglacial expansions. Our study demonstrates that the evolutionary history of European temperate small mammals is indeed much more complex than previously suggested. Species can experience heterogeneous evolutionary histories over their geographic range. Multidisciplinary approaches should therefore be preferentially chosen in prospective studies, the better to understand the impact of climatic change on past and present biodiversity
    corecore