164 research outputs found
A biochemical engineering study of lysozyme refolding
Available from British Library Document Supply Centre-DSC:DXN010371 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo
Cancer-associated osteoclast differentiation takes a good look in the miR(NA)ror
Tumor-bone cell interactions are critical for the development of metastasis-related osteolytic bone destruction. In this issue of Cancer Cell, Ell and colleagues show how a discrete miRNA network regulates osteoclastogenesis during breast cancer bone metastasis. A signature of upregulated miRNAs may have diagnostic and therapeutic implications for bone metastases
Skeletal muscle Ca2+ mishandling: another effect of bone-to-muscle signaling
Our appreciation of crosstalk between muscle and bone has recently expanded beyond mechanical force-driven events to encompass a variety of signaling factors originating in one tissue and communicating to the other. While the recent identification of new ‘myokines’ has shifted some focus to the role of muscle in this partnership, bone-derived factors and their effects on skeletal muscle should not be overlooked. This review summarizes some previously known mediators of bone-to-muscle signaling and also recent work identifying a new role for bone-derived TGF-β as a cause of skeletal muscle weakness in the setting of cancer-induced bone destruction. Oxidation of the ryanodine receptor/calcium release channel (RyR1) in skeletal muscle occurs via a TGF-β-Nox4-RyR1 axis and leads to calcium mishandling and decreased muscle function. Multiple points of potential therapeutic intervention were identified, from preventing the bone destruction to stabilizing the RYR1 calcium channel. This new data reinforces the concept that bone can be an important source of signaling factors in pathphysiological settings
The Role of TGFβ in Bone-Muscle Crosstalk
Purpose of Review
The role of bone-derived factors in regulation of skeletal muscle function is an important emerging aspect of research into bone-muscle crosstalk. Implications for this area of research are far reaching and include understanding skeletal muscle weakness in cancer, osteoporosis, cachexia, rare diseases of bone, and aging.
Recent Findings
Recent research shows that bone-derived factors can lead to changes in the skeletal muscle. These changes can either be anabolic or catabolic, and we focus this review on the role of TGFβ in driving oxidative stress and skeletal muscle weakness in the setting of osteolytic cancer in the bone.
Summary
The bone is a preferred site for breast cancer metastasis and leads to pathological bone loss. Osteolytic cancer in the bone leads to release of TGFβ from the bone via osteoclast-mediated bone destruction. Our appreciation of crosstalk between the muscle and bone has recently expanded beyond mechanical force-driven events to encompass a variety of signaling factors originating in one tissue and communicating to the other. This review summarizes some previously known mediators of bone-to-muscle signaling and also recent work identifying a new role for bone-derived TGFβ as a cause of skeletal muscle weakness in the setting of osteolytic cancer in the bone. Multiple points of potential therapeutic intervention are discussed
Molecular mechanisms of bone metastasis and associated muscle weakness
Bone is a preferred site for breast cancer metastasis and leads to pathologic bone loss due to increased osteoclast-induced bone resorption. The homing of tumor cells to the bone depends on the support of the bone microenvironment in which the tumor cells prime the premetastatic niche. The colonization and growth of tumor cells then depend on adaptations in the invading tumor cells to take advantage of normal physiologic responses by mimicking bone marrow cells. This concerted effort by tumor cells leads to uncoupled bone remodeling in which the balance of osteoclast-driven bone resorption and osteoblast-driven bone deposition is lost. Breast cancer bone metastases often lead to osteolytic lesions due to hyperactive bone resorption. Release of growth factors from bone matrix during resorption then feeds a "vicious cycle" of bone destruction leading to many skeletal-related events. In addition to activity in bone, some of the factors released during bone resorption are also known to be involved in skeletal muscle regeneration and contraction. In this review, we discuss the mechanisms that lead to osteolytic breast cancer bone metastases and the potential for cancer-induced bone-muscle cross-talk leading to skeletal muscle weakness
Knowledge and Awareness Among Patients with Chronic Kidney Disease Stage 3
Knowledge is a prerequisite for changing behavior, and is useful for improving outcomes and reducing mortality rates in patients diagnosed with chronic kidney disease (CKD). The purpose of this article is to describe baseline CKD knowledge and awareness obtained as part of a larger study testing the feasibility of a self-management intervention. Thirty patients were recruited who had CKD Stage 3 with coexisting diabetes and hypertension. Fifty-four percent of the sample were unaware of their CKD diagnosis. Participants had a moderate amount of CKD knowledge. This study suggests the need to increase knowledge in patients with CKD Stage 3 to aid in slowing disease progression
Cultivar Contributes to the Beneficial Effects of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to Protect Grapevine Against Neofusicoccum parvum
[EN] Grapevine trunk diseases (GTDs) are a big threat for global viticulture. Without effective chemicals, biocontrol strategies are developed as alternatives to better cope with environmental concerns. A combination of biological control agents (BCAs) could even improve sustainable disease management through complementary ways of protection. In this study, we evaluated the combination of Bacillus subtilis (Bs) PTA-271 and Trichoderma atroviride (Ta) SC1 for the protection of Chardonnay and Tempranillo rootlings against Neofusicoccum parvum Bt67, an aggressive pathogen associated to Botryosphaeria dieback (BD). Indirect benefits offered by each BCA and their combination were then characterized in planta, as well as their direct benefits in vitro. Results provide evidence that (1) the cultivar contributes to the beneficial effects of Bs PTA-271 and Ta SC1 against N. parvum, and that (2) the in vitro BCA mutual antagonism switches to the strongest fungistatic effect toward Np-Bt67 in a three-way confrontation test. We also report for the first time the beneficial potential of a combination of BCA against Np-Bt67 especially in Tempranillo. Our findings highlight a common feature for both cultivars: salicylic acid (SA)-dependent defenses were strongly decreased in plants protected by the BCA, in contrast with symptomatic ones. We thus suggest that (1) the high basal expression of SA-dependent defenses in Tempranillo explains its highest susceptibility to N. parvum, and that (2) the cultivar-specific responses to the beneficial Bs PTA-271 and Ta SC1 remain to be further investigated.Funding This work was supported by a French Grant from the Region GRAND-EST France and the City of GRAND-REIMS France through the BIOVIGNE Ph.D. program, whose functioning is supported by BELCHIM Crop Protection France. DG was supported by the Ramon y Cajal program, Spanish Government (RyC-2017-23098).Leal, C.; Richet, N.; Guise, J.; Gramaje, D.; Armengol Fortí, J.; Fontaine, F.; Trotel-Aziz, P. (2021). Cultivar Contributes to the Beneficial Effects of Bacillus subtilis PTA-271 and Trichoderma atroviride SC1 to Protect Grapevine Against Neofusicoccum parvum. Frontiers in Microbiology. 12:1-17. https://doi.org/10.3389/fmicb.2021.726132S1171
THE INDIANA CENTER FOR BREAST CANCER RESEARCH: PROGRESS REPORT
poster abstractThe mission of IUPUI breast cancer center is to address prevention, early detection, and treatment of breast cancer through translational projects, supportive cores, and synergistic programs. This poster details our efforts improve resources for breast cancer research and efforts to develop multi-PI investigator proposals. The Signature Center Initiative has developed two web resources: the Breast Cancer Prognostics Database (BCDB) to study prognostic implications of genes of interest in publically available breast cancer databases and PROGmiR, a microRNA database. The BCDB can be used to study overall, recurrence free and metastasis free survival in large patient series. PROGmiR allows investigators to study the prognostic importance of microRNAs. PROGmiR has recently been published and has been accessed by investigators from several countries. The signature center has also devoted considerable efforts in developing tumor tissue resource. Tissue Bank includes a total sample of N = 500 cases with 30% non-Caucasian cases from Wishard Memorial Hospital. Currently 237 cases have been assembled into a Tissue Microarray with clinical and follow up data. The breast cancer center has funded three pilot projects. Drs. Clark Wells, S. Badve, and G. Sandusky are collaborating on the project: “Histologic Analysis of the Protein Levels of Amot130, AmotL1 and YAP in Normal, Hyperplastic and Invasive Breast Cancer Tissues”. This project is investigating localized protein expression in paraffin-embedded tissues to associate expression levels with disease subtype and patient outcome. Dr. David Gilley and his group are collaborating on the project: “Luminal mammary progenitors are a unique site of telomere dysfunction”. This project is investigating the relationship between telomere dysfunction and breast cancer tumorigenesis. In the third project, Dr. Theresa Guise will be investigating the mechanisms of cancer-associated cachexia. Several multi-PI proposals are under preparation and one proposal with Drs. Nakshatri and Kathy Miller as PIs is currently under review
- …