79 research outputs found

    Differences in Acinetobacter baumannii Strains and Host Innate Immune Response Determine Morbidity and Mortality in Experimental Pneumonia

    Get PDF
    Despite many reports documenting its epidemicity, little is known on the interaction of Acinetobacter baumannii with its host. To deepen our insight into this relationship, we studied persistence of and host response to different A. baumannii strains including representatives of the European (EU) clones I–III in a mouse pneumonia model. Neutropenic mice were inoculated intratracheally with five A. baumannii strains and an A. junii strain and at several days morbidity, mortality, bacterial counts, airway inflammation, and chemo- and cytokine production in lungs and blood were determined. A. baumannii RUH875 and RUH134 (EU clone I and II, respectively) and sporadic strain LUH8326 resulted in high morbidity/mortality, whereas A. baumannii LUH5875 (EU clone III, which is less widespread than clone I and II) caused less symptoms. A. baumannii type strain RUH3023T and A. junii LUH5851 did not cause disease. All strains, except A. baumannii RUH3023T and A. junii LUH5851, survived and multiplied in the lungs for several days. Morbidity and mortality were associated with the severity of lung pathology and a specific immune response characterized by low levels of anti-inflammatory (IL-10) and specific pro-inflammatory (IL-12p40 and IL-23) cytokines at the first day of infection. Altogether, a striking difference in behaviour among the A. baumannii strains was observed with the clone I and II strains being most virulent, whereas the A. baumannii type strain, which is frequently used in virulence studies appeared harmless

    Impact of Mycobacterium ulcerans Biofilm on Transmissibility to Ecological Niches and Buruli Ulcer Pathogenesis

    Get PDF
    The role of biofilms in the pathogenesis of mycobacterial diseases remains largely unknown. Mycobacterium ulcerans, the etiological agent of Buruli ulcer, a disfiguring disease in humans, adopts a biofilm-like structure in vitro and in vivo, displaying an abundant extracellular matrix (ECM) that harbors vesicles. The composition and structure of the ECM differs from that of the classical matrix found in other bacterial biofilms. More than 80 proteins are present within this extracellular compartment and appear to be involved in stress responses, respiration, and intermediary metabolism. In addition to a large amount of carbohydrates and lipids, ECM is the reservoir of the polyketide toxin mycolactone, the sole virulence factor of M. ulcerans identified to date, and purified vesicles extracted from ECM are highly cytotoxic. ECM confers to the mycobacterium increased resistance to antimicrobial agents, and enhances colonization of insect vectors and mammalian hosts. The results of this study support a model whereby biofilm changes confer selective advantages to M. ulcerans in colonizing various ecological niches successfully, with repercussions for Buruli ulcer pathogenesis

    Comparative in vitro activity of Meropenem, Imipenem and Piperacillin/tazobactam against 1071 clinical isolates using 2 different methods: a French multicentre study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Meropenem is a carbapenem that has an excellent activity against many gram-positive and gram-negative aerobic, facultative, and anaerobic bacteria. The major objective of the present study was to assess the <it>in vitro </it>activity of meropenem compared to imipenem and piperacillin/tazobactam, against 1071 non-repetitive isolates collected from patients with bacteremia (55%), pneumonia (29%), peritonitis (12%) and wound infections (3%), in 15 French hospitals in 2006. The secondary aim of the study was to compare the results of routinely testings and those obtained by a referent laboratory.</p> <p>Method</p> <p>Susceptibility testing and Minimum Inhibitory Concentrations (MICs) of meropenem, imipenem and piperacillin/tazobactam were determined locally by Etest method. Susceptibility to meropenem was confirmed at a central laboratory by disc diffusion method and MICs determined by agar dilution method for meropenem, imipenem and piperacillin/tazobactam.</p> <p>Results</p> <p>Cumulative susceptibility rates against <it>Escherichia coli </it>were, meropenem and imipenem: 100% and piperacillin/tazobactam: 90%. Against other <it>Enterobacteriaceae</it>, the rates were meropenem: 99%, imipenem: 98% and piperacillin/tazobactam: 90%. All <it>Staphylococci</it>, <it>Streptococci </it>and anaerobes were susceptible to the three antibiotics. Against non fermeters, meropenem was active on 84-94% of the strains, imipenem on 84-98% of the strains and piperacillin/tazobactam on 90-100% of the strains.</p> <p>Conclusions</p> <p>Compared to imipenem, meropenem displays lower MICs against <it>Enterobacteriaceae</it>, <it>Escherichia coli </it>and <it>Pseudomonas aeruginosa</it>. Except for non fermenters, MICs90 of carbapenems were <4 mg/L. Piperacillin/tazobactam was less active against <it>Enterobacteriaceae </it>and <it>Acinetobacter </it>but not <it>P. aeruginosa</it>. Some discrepancies were noted between MICs determined by Etest accross centres and MICs determined by agar dilution method at the central laboratory. Discrepancies were more common for imipenem testing and more frequently related to a few centres. Overall MICs determined by Etest were in general higher (0.5 log to 1 log fold) than MICs by agar dilution.</p

    High Content Screening Identifies Decaprenyl-Phosphoribose 2’ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors

    Get PDF
    A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2\u27 epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials

    High Content Screening Identifies Decaprenyl-Phosphoribose 2′ Epimerase as a Target for Intracellular Antimycobacterial Inhibitors

    Get PDF
    A critical feature of Mycobacterium tuberculosis, the causative agent of human tuberculosis (TB), is its ability to survive and multiply within macrophages, making these host cells an ideal niche for persisting microbes. Killing the intracellular tubercle bacilli is a key requirement for efficient tuberculosis treatment, yet identifying potent inhibitors has been hampered by labor-intensive techniques and lack of validated targets. Here, we present the development of a phenotypic cell-based assay that uses automated confocal fluorescence microscopy for high throughput screening of chemicals that interfere with the replication of M. tuberculosis within macrophages. Screening a library of 57,000 small molecules led to the identification of 135 active compounds with potent intracellular anti-mycobacterial efficacy and no host cell toxicity. Among these, the dinitrobenzamide derivatives (DNB) showed high activity against M. tuberculosis, including extensively drug resistant (XDR) strains. More importantly, we demonstrate that incubation of M. tuberculosis with DNB inhibited the formation of both lipoarabinomannan and arabinogalactan, attributable to the inhibition of decaprenyl-phospho-arabinose synthesis catalyzed by the decaprenyl-phosphoribose 2′ epimerase DprE1/DprE2. Inhibition of this new target will likely contribute to new therapeutic solutions against emerging XDR-TB. Beyond validating the high throughput/content screening approach, our results open new avenues for finding the next generation of antimicrobials

    Mécanismes d'apparition et de dissémination de la résistance

    No full text
    Titre de la session : Les super bugsNational audienc

    Mécanismes d'apparition et de dissémination de la résistance

    No full text
    Titre de la session : Les super bugsNational audienc
    corecore