145 research outputs found

    Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment

    Get PDF
    We provide a large deviations analysis of deadlock phenomena occurring in distributed systems sharing common resources. In our model transition probabilities of resource allocation and deallocation are time and space dependent. The process is driven by an ergodic Markov chain and is reflected on the boundary of the d-dimensional cube. In the large resource limit, we prove Freidlin-Wentzell estimates, we study the asymptotic of the deadlock time and we show that the quasi-potential is a viscosity solution of a Hamilton-Jacobi equation with a Neumann boundary condition. We give a complete analysis of the colliding 2-stacks problem and show an example where the system has a stable attractor which is a limit cycle

    Recurrence and Polya number of general one-dimensional random walks

    Full text link
    The recurrence properties of random walks can be characterized by P\'{o}lya number, i.e., the probability that the walker has returned to the origin at least once. In this paper, we consider recurrence properties for a general 1D random walk on a line, in which at each time step the walker can move to the left or right with probabilities ll and rr, or remain at the same position with probability oo (l+r+o=1l+r+o=1). We calculate P\'{o}lya number PP of this model and find a simple expression for PP as, P=1ΔP=1-\Delta, where Δ\Delta is the absolute difference of ll and rr (Δ=lr\Delta=|l-r|). We prove this rigorous expression by the method of creative telescoping, and our result suggests that the walk is recurrent if and only if the left-moving probability ll equals to the right-moving probability rr.Comment: 3 page short pape

    Recurrence of biased quantum walks on a line

    Full text link
    The Polya number of a classical random walk on a regular lattice is known to depend solely on the dimension of the lattice. For one and two dimensions it equals one, meaning unit probability to return to the origin. This result is extremely sensitive to the directional symmetry, any deviation from the equal probability to travel in each direction results in a change of the character of the walk from recurrent to transient. Applying our definition of the Polya number to quantum walks on a line we show that the recurrence character of quantum walks is more stable against bias. We determine the range of parameters for which biased quantum walks remain recurrent. We find that there exist genuine biased quantum walks which are recurrent.Comment: Journal reference added, minor corrections in the tex

    A Compact Ring for Thom X-Ray Source

    No full text
    International audienceThe goal of X-ray sources based on Compton back scattering processes is to develop a compact device, which could produce an intense flux of monochromatic X-rays. Compton back-scattering resuls from collisions between laser pulses and relativistic electron bunches. Due to the relative low value of the Compton cross section, a high charge electron beam, a low emittance and a high focusing at the interaction point are required for the electron beam. In addition, the X-ray flux is related to the characteristics of the electron beam, which are themselves dynamically affected by the Compton interaction. One possible configuration is to inject frequently into a storage ring with a low emittance linear accelerator without waiting for the synchrotron equilibrium. As a consequence, the optics should be designed taking into account the characteristics of the electron beam from the linear accelerator. The accelerator ring design for a 50 MeV electron beam, aiming at producing a flux higher than 1013 ph/s, will be presented

    DNA-templated assembly of droplet-derived PEG microtissues

    Get PDF
    Patterning multiple cell types is a critical step for engineering functional tissues, but few methods provide three-dimensional positioning at the cellular length scale. Here, we present a “bottom-up” approach for fabricating multicellular tissue constructs that utilizes DNA-templated assembly of 3D cell-laden hydrogel microtissues. A flow focusing-generated emulsion of photopolymerizable prepolymer is used to produce 100 μm monodisperse microtissues at a rate of 100 Hz (10[superscript 5] h[superscript −1]). Multiple cell types, including suspension and adherently cultured cells, can be encapsulated into the microtissues with high viability ([similar]97%). We then use a DNA coding scheme to self-assemble microtissues “bottom-up” from a template that is defined using “top-down” techniques. The microtissues are derivatized with single-stranded DNA using a biotin–streptavidin linkage to the polymer network, and are assembled by sequence-specific hybridization onto spotted DNA microarrays. Using orthogonal DNA codes, we achieve multiplexed patterning of multiple microtissue types with high binding efficiency and >90% patterning specificity. Finally, we demonstrate the ability to organize multicomponent constructs composed of epithelial and mesenchymal microtissues while preserving each cell type in a 3D microenvironment. The combination of high throughput microtissue generation with scalable surface-templated assembly offers the potential to dissect mechanisms of cell–cell interaction in three dimensions in healthy and diseased states, as well as provides a framework for templated assembly of larger structures for implantation

    mTORC1 amplifies the ATF4-dependent de novo serine-glycine pathway to supply glycine during TGF-β1-induced collagen biosynthesis

    Get PDF
    The differentiation of fibroblasts into a transient population of highly activated, extracellular matrix (ECM)-producing myofibroblasts at sites of tissue injury is critical for normal tissue repair. Excessive myofibroblast accumulation and persistence, often as a result of a failure to undergo apoptosis when tissue repair is complete, lead to pathological fibrosis and are also features of the stromal response in cancer. Myofibroblast differentiation is accompanied by changes in cellular metabolism, including increased glycolysis, to meet the biosynthetic demands of enhanced ECM production. Here, we showed that transforming growth factor-β1 (TGF-β1), the key pro-fibrotic cytokine implicated in multiple fibrotic conditions, increased the production of activating transcription factor 4 (ATF4), the transcriptional master regulator of amino acid metabolism, to supply glucose-derived glycine to meet the amino acid requirements associated with enhanced collagen production in response to myofibroblast differentiation. We further delineated the signaling pathways involved and showed that TGF-β1-induced ATF4 production depended on cooperation between canonical TGF-β1 signaling through Smad3 and activation of mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). ATF4, in turn, promoted the transcription of genes encoding enzymes of the de novo serine-glycine biosynthetic pathway and glucose transporter 1 (GLUT1). Our findings suggest that targeting the TGF-β1-mTORC1-ATF4 axis may represent a novel therapeutic strategy for interfering with myofibroblast function in fibrosis and potentially in other conditions, including cancer

    A clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and outcome after cardiac arrest

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Anoxic coma following cardiac arrest is a common problem with ethical, social, and legal consequences. Except for unfavorable somatosensory-evoked potentials (SSEP) results, predictors of unfavorable outcome with a 100% specificity and a high sensitivity are lacking. The aim of the current research was to construct a clinical and EEG scoring system that predicts early cortical response (N20) to somatosensory evoked potentials and 6-months outcome in comatose patients after cardiac arrest.</p> <p>Methods</p> <p>We retrospectively reviewed the records of all consecutive patients who suffered cardiac arrest outside our hospital and were subsequently admitted to our facility from November 2002 to July 2006. We scored each case based on early clinical and EEG factors associated with unfavorable SSEPs, and we assessed the ability of this score to predict SSEP results and outcome.</p> <p>Results</p> <p>Sixty-six patients qualified for inclusion in the cohort. Among them, 34 (52%) had unfavorable SSEP results. At day three, factors independently associated with unfavorable SSEPs were: absence of corneal (14 points) and pupillary (21 points) reflexes, myoclonus (25 points), extensor or absent motor response to painful stimulation (28 points), and malignant EEG (11 points). A score >40 points had a sensitivity of 85%, a specificity of 84%, and a positive predictive value (PPV) of 85% to predict unfavorable SSEP results. A score >88 points had a PPV of 100%, but a sensitivity of 18%. Overall, this score had an area under ROC curves of 0.919. In addition, at day three, a score > 69 points had a PPV of 100% with a sensitivity of 32% to predict death or vegetative state.</p> <p>Conclusion</p> <p>A scoring system based on a combination of clinical and EEG findings can predict the absence of early cortical response to SSEPs. In settings without access to SSEPs, this score may help decision-making in a subset of comatose survivors after a cardiac arrest.</p

    Perivascular-like cells contribute to the stability of the vascular network of osteogenic tissue formed from cell sheet-based constructs

    Get PDF
    In recent years several studies have been supporting the existence of a close relationship in terms of function and progeny between Mesenchymal Stem Cells (MSCs) and Pericytes. This concept has opened new perspectives for the application of MSCs in Tissue Engineering (TE), with special interest for the pre-vascularization of cell dense constructs. In this work, cell sheet technology was used to create a scaffold-free construct composed of osteogenic, endothelial and perivascular-like (CD146+) cells for improved in vivo vessel formation, maturation and stability. The CD146 pericyte-associated phenotype was induced from human bone marrow mesenchymal stem cells (hBMSCs) by the supplementation of standard culture medium with TGF-b1. Co-cultured cell sheets were obtained by culturing perivascular-like (CD146+) cells and human umbilical vein endothelial cells (HUVECs) on an hBMSCs monolayer maintained in osteogenic medium for 7 days. The perivascular-like (CD146+) cells and the HUVECs migrated and organized over the collagen-rich osteogenic cell sheet, suggesting the existence of cross-talk involving the co-cultured cell types. Furthermore the presence of that particular ECM produced by the osteoblastic cells was shown to be the key regulator for the singular observed organization. The osteogenic and angiogenic character of the proposed constructs was assessed in vivo. Immunohistochemistry analysis of the explants revealed the integration of HUVECs with the host vasculature as well as the osteogenic potential of the created construct, by the expression of osteocalcin. Additionally, the analysis of the diameter of human CD146 positive blood vessels showed a higher mean vessel diameter for the co-cultured cell sheet condition, reinforcing the advantage of the proposed model regarding blood vessels maturation and stability and for the in vitro pre-vascularization of TE constructs.Funding provided by Fundacao para a Ciencia e a Tecnologia project Skingineering (PTDC/SAU-OSM/099422/2008). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery

    Get PDF
    Background Bone grafting has been considered the gold standard for hard tissue reconstructive surgery and is widely used for large mandibular defect reconstruction. However, the midface encompasses delicate structures that are surrounded by a complex bone architecture, which makes bone grafting using traditional methods very challenging. Three-dimensional (3D) bioprinting is a developing technology that is derived from the evolution of additive manufacturing. It enables precise development of a scaffold from different available biomaterials that mimic the shape, size, and dimension of a defect without relying only on the surgeon’s skills and capabilities, and subsequently, may enhance surgical outcomes and, in turn, patient satisfaction and quality of life. Review This review summarizes different biomaterial classes that can be used in 3D bioprinters as bioinks to fabricate bone scaffolds, including polymers, bioceramics, and composites. It also describes the advantages and limitations of the three currently used 3D bioprinting technologies: inkjet bioprinting, micro-extrusion, and laser-assisted bioprinting. Conclusions Although 3D bioprinting technology is still in its infancy and requires further development and optimization both in biomaterials and techniques, it offers great promise and potential for facial reconstruction with improved outcome
    corecore