15 research outputs found

    On the clinical relevance of using complete high-resolution HLA typing for an accurate interpretation of posttransplant immune-mediated graft outcomes

    Get PDF
    Complete and high-resolution (HR) HLA typing improves the accurate assessment of donor-recipient compatibility and pre-transplant donor-specific antibodies (DSA). However, the value of this information to identify de novo immune-mediated graft events and its impact on outcomes has not been assessed. In 241 donor/recipient kidney transplant pairs, DNA samples were re-evaluated for six-locus (A/B/C/DRB1/DQB1+A1/DPB1) HR HLA typing. De novo anti-HLA antibodies were assessed using solid-phase assays, and dnDSA were classified either (1) as per current clinical practice according to three-locus (A/B/DRB1) low-resolution (LR) typing, estimating donor HLA-C/DQ typing with frequency tables, or (2) according to complete six-locus HR typing. The impact on graft outcomes was compared between groups. According to LR HLA typing, 36 (15%) patients developed dnDSA (LR_dnDSA+). Twenty-nine out of 36 (80%) were confirmed to have dnDSA by HR typing (LR_dnDSA+/HR_dnDSA+), whereas 7 (20%) did not (LR_dnDSA+/HR_dnDSA-). Out of 49 LR_dnDSA specificities, 34 (69%) were confirmed by HR typing whereas 15 (31%) LR specificities were not confirmed. LR_dnDSA+/HR_dnDSA+ patients were at higher risk of ABMR as compared to dnDSA- and LR_dnDSA+/HR_dnDSA- (logRank < 0.001), and higher risk of death-censored graft loss (logRank = 0.001). Both LR_dnDSA+ (HR: 3.51, 95% CI = 1.25-9.85) and LR_dnDSA+/HR_dnDSA+ (HR: 4.09, 95% CI = 1.45-11.54), but not LR_dnDSA+/HR_dnDSA- independently predicted graft loss. The implementation of HR HLA typing improves the characterization of biologically relevant de novo anti-HLA DSA and discriminates patients with poorer graft outcomes

    Expansion of Highly Differentiated Cytotoxic Terminally Differentiated Effector Memory CD8+ T Cells in a Subset of Clinically Stable Kidney Transplant Recipients:A Potential Marker for Late Graft Dysfunction

    No full text
    S.B. and N.D. contributed equally to this work.International audienceDespite the effectiveness of immunosuppressive drugs, kidney transplant recipients still face late graft dysfunction. Thus, it is necessary to identify biomarkers to detect the first pathologic events and guide therapeutic target development. Previously, we identified differences in the T-cell receptor Vb repertoire in patients with stable graft function. In this prospective study, we assessed the long-term effect of CD8 + T-cell differentiation and function in 131 patients who had stable graft function. In 45 of 131 patients, a restriction of TCR Vb diversity was detected and associated with the expansion of terminally differentiated effector memory (TEMRA; CD45RA+CCR7-CD27-CD28-) CD8+ T cells expressing high levels of perforin, granzyme B, and T-bet. This phenotype positively correlated with the level of CD57 and the ability of CD8+ T cells to secrete TNF-α and IFN-γ. Finally, 47 of 131 patients experienced kidney dysfunction during the median 15-year follow-up period. Using a Cox regression model, we found a 2-fold higher risk (P=0.06) of long-term graft dysfunction in patients who had increased levels of differentiated TEMRA CD8+ T cells at inclusion. Collectively, these results suggest that monitoring the phenotype and function of circulating CD8+ T cells may improve the early identification of at-risk patients

    Characterization of antigen-specific B cells using nominal antigen-coated flow-beads.

    Get PDF
    In order to characterize the reactivity of B cells against nominal antigens, a method based on the coupling of antigens onto the surface of fluorescent core polystyrene beads was developed. We first demonstrate that murine B cells with a human MOG-specific BCR are able to interact with MOG-coated beads and do not recognize beads coated with human albumin or pp65. B cells purified from human healthy volunteer blood or immunized individuals were tested for their ability to interact with various nominal antigens, including viral, vaccine, self and alloantigens, chosen for their usefulness in studying a variety of pathological processes. A substantial amount of B cells binding self-antigen MOG-coated beads can be detected in normal blood. Furthermore, greater frequencies of B cell against anti-Tetanic Toxin or anti-EBNA1 were observed in primed individuals. This method can reveal increased frequencies of anti-HLA committed B cells in patients with circulating anti-HLA antibodies compared to unsensitized patients and normal individuals. Of interest, those specific CD19 cells were preferentially identified within CD27(-)IgD(+) (i-e naïve) subset. These observations suggest that a broad range of medical situations could benefit from a tool that allows the detection, the quantification and the characterization of antigen-specific blood B cells

    DataSheet_1_On the clinical relevance of using complete high-resolution HLA typing for an accurate interpretation of posttransplant immune-mediated graft outcomes.docx

    No full text
    Complete and high-resolution (HR) HLA typing improves the accurate assessment of donor–recipient compatibility and pre-transplant donor-specific antibodies (DSA). However, the value of this information to identify de novo immune-mediated graft events and its impact on outcomes has not been assessed. In 241 donor/recipient kidney transplant pairs, DNA samples were re-evaluated for six-locus (A/B/C/DRB1/DQB1+A1/DPB1) HR HLA typing. De novo anti-HLA antibodies were assessed using solid-phase assays, and dnDSA were classified either (1) as per current clinical practice according to three-locus (A/B/DRB1) low-resolution (LR) typing, estimating donor HLA-C/DQ typing with frequency tables, or (2) according to complete six-locus HR typing. The impact on graft outcomes was compared between groups. According to LR HLA typing, 36 (15%) patients developed dnDSA (LR_dnDSA+). Twenty-nine out of 36 (80%) were confirmed to have dnDSA by HR typing (LR_dnDSA+/HR_dnDSA+), whereas 7 (20%) did not (LR_dnDSA+/HR_dnDSA−). Out of 49 LR_dnDSA specificities, 34 (69%) were confirmed by HR typing whereas 15 (31%) LR specificities were not confirmed. LR_dnDSA+/HR_dnDSA+ patients were at higher risk of ABMR as compared to dnDSA− and LR_dnDSA+/HR_dnDSA− (logRank < 0.001), and higher risk of death-censored graft loss (logRank = 0.001). Both LR_dnDSA+ (HR: 3.51, 95% CI = 1.25–9.85) and LR_dnDSA+/HR_dnDSA+ (HR: 4.09, 95% CI = 1.45–11.54), but not LR_dnDSA+/HR_dnDSA− independently predicted graft loss. The implementation of HR HLA typing improves the characterization of biologically relevant de novo anti-HLA DSA and discriminates patients with poorer graft outcomes.</p
    corecore