17 research outputs found

    Complex I-Associated Hydrogen Peroxide Production Is Decreased and Electron Transport Chain Enzyme Activities Are Altered in n-3 Enriched fat-1 Mice

    Get PDF
    The polyunsaturated nature of n-3 fatty acids makes them prone to oxidative damage. However, it is not clear if n-3 fatty acids are simply a passive site for oxidative attack or if they also modulate mitochondrial reactive oxygen species (ROS) production. The present study used fat-1 transgenic mice, that are capable of synthesizing n-3 fatty acids, to investigate the influence of increases in n-3 fatty acids and resultant decreases in the n-6∶n-3 ratio on liver mitochondrial H2O2 production and electron transport chain (ETC) activity. There was an increase in n-3 fatty acids and a decrease in the n-6∶n-3 ratio in liver mitochondria from the fat-1 compared to control mice. This change was largely due to alterations in the fatty acid composition of phosphatidylcholine and phosphatidylethanolamine, with only a small percentage of fatty acids in cardiolipin being altered in the fat-1 animals. The lipid changes in the fat-1 mice were associated with a decrease (p<0.05) in the activity of ETC complex I and increases (p<0.05) in the activities of complexes III and IV. Mitochondrial H2O2 production with either succinate or succinate/glutamate/malate substrates was also decreased (p<0.05) in the fat-1 mice. This change in H2O2 production was due to a decrease in ROS production from ETC complex I in the fat-1 animals. These results indicate that the fatty acid changes in fat-1 liver mitochondria may at least partially oppose oxidative stress by limiting ROS production from ETC complex I

    Coenzyme Q10 Metabolism: A Review of Unresolved Issues

    No full text
    The variable success in the outcome of randomised controlled trials supplementing coenzyme Q10 (CoQ10) may in turn be associated with a number of currently unresolved issues relating to CoQ10 metabolism. In this article, we have reviewed what is currently known about these factors and where gaps in knowledge exist that need to be further elucidated. Issues addressed include (i) whether the bioavailability of CoQ10 could be improved; (ii) whether CoQ10 could be administered intravenously; (iii) whether CoQ10 could be administered via alternative routes; (iv) whether CoQ10 can cross the blood-brain barrier; (v) how CoQ10 is transported into and within target cells; (vi) why some clinical trials supplementing CoQ10 may have been unsuccessful; and (vii) which is the most appropriate tissue for the clinical assessment of CoQ10 status

    Coenzyme Q10 Metabolism: A Review of Unresolved Issues

    No full text
    The variable success in the outcome of randomised controlled trials supplementing coenzyme Q10 (CoQ10) may in turn be associated with a number of currently unresolved issues relating to CoQ10 metabolism. In this article, we have reviewed what is currently known about these factors and where gaps in knowledge exist that need to be further elucidated. Issues addressed include (i) whether the bioavailability of CoQ10 could be improved; (ii) whether CoQ10 could be administered intravenously; (iii) whether CoQ10 could be administered via alternative routes; (iv) whether CoQ10 can cross the blood-brain barrier; (v) how CoQ10 is transported into and within target cells; (vi) why some clinical trials supplementing CoQ10 may have been unsuccessful; and (vii) which is the most appropriate tissue for the clinical assessment of CoQ10 status

    Mitochondrial defects caused by PARL deficiency lead to arrested spermatogenesis and ferroptosis

    No full text
    Impaired spermatogenesis and male infertility are common manifestations associated with mitochondrial diseases, yet the underlying mechanisms linking these conditions remain elusive. In this study, we demonstrate that mice deficient for the mitochondrial intra-membrane rhomboid protease PARL, a recently reported model of the mitochondrial encephalopathy Leigh syndrome, develop early testicular atrophy caused by a complete arrest of spermatogenesis during meiotic prophase I, followed by degeneration and death of arrested spermatocytes. This process is independent of neurodegeneration. Interestingly, genetic modifications of PINK1, PGAM5, and TTC19 – three major substrates of PARL with important roles in mitochondrial homeostasis – fail to reproduce or modify this severe phenotype, indicating that the spermatogenic arrest arises from distinct molecular pathways. We further observed severe abnormalities in mitochondrial ultrastructure in PARL-deficient spermatocytes, along with prominent electron transfer chain defects, disrupted coenzyme Q (CoQ) biosynthesis, and metabolic rewiring. These mitochondrial defects are associated with a germ cell-specific decrease in GPX4 expression leading arrested spermatocytes to ferroptosis – a regulated cell death modality characterized by uncontrolled lipid peroxidation. Our results suggest that mitochondrial defects induced by PARL depletion act as an initiating trigger for ferroptosis in primary spermatocytes through simultaneous effects on GPX4 and CoQ – two major inhibitors of ferroptosis. These findings shed new light on the potential role of ferroptosis in the pathogenesis of mitochondrial diseases and male infertility warranting further investigation

    PARL deficiency in mouse causes Complex III defects, coenzyme Q depletion, and Leigh-like syndrome

    No full text
    The mitochondrial intramembrane rhomboid protease PARL has been implicated in diverse functions in vitro, but its physiological role in vivo remains unclear. Here we show that Parl ablation in mouse causes a necrotizing encephalomyelopathy similar to Leigh syndrome, a mitochondrial disease characterized by disrupted energy production. Mice with conditional PARL deficiency in the nervous system, but not in muscle, develop a similar phenotype as germline Parl KOs, demonstrating the vital role of PARL in neurological homeostasis. Genetic modification of two major PARL substrates, PINK1 and PGAM5, do not modify this severe neurological phenotype. Parl-/- brain mitochondria are affected by progressive ultrastructural changes and by defects in Complex III (CIII) activity, coenzyme Q (CoQ) biosynthesis, and mitochondrial calcium metabolism. PARL is necessary for the stable expression of TTC19, which is required for CIII activity, and of COQ4, which is essential in CoQ biosynthesis. Thus, PARL plays a previously overlooked constitutive role in the maintenance of the respiratory chain in the nervous system, and its deficiency causes progressive mitochondrial dysfunction and structural abnormalities leading to neuronal necrosis and Leigh-like syndrome.status: publishe
    corecore