28 research outputs found

    Global overview of the management of acute cholecystitis during the COVID-19 pandemic (CHOLECOVID study)

    Get PDF
    Background: This study provides a global overview of the management of patients with acute cholecystitis during the initial phase of the COVID-19 pandemic. Methods: CHOLECOVID is an international, multicentre, observational comparative study of patients admitted to hospital with acute cholecystitis during the COVID-19 pandemic. Data on management were collected for a 2-month study interval coincident with the WHO declaration of the SARS-CoV-2 pandemic and compared with an equivalent pre-pandemic time interval. Mediation analysis examined the influence of SARS-COV-2 infection on 30-day mortality. Results: This study collected data on 9783 patients with acute cholecystitis admitted to 247 hospitals across the world. The pandemic was associated with reduced availability of surgical workforce and operating facilities globally, a significant shift to worse severity of disease, and increased use of conservative management. There was a reduction (both absolute and proportionate) in the number of patients undergoing cholecystectomy from 3095 patients (56.2 per cent) pre-pandemic to 1998 patients (46.2 per cent) during the pandemic but there was no difference in 30-day all-cause mortality after cholecystectomy comparing the pre-pandemic interval with the pandemic (13 patients (0.4 per cent) pre-pandemic to 13 patients (0.6 per cent) pandemic; P = 0.355). In mediation analysis, an admission with acute cholecystitis during the pandemic was associated with a non-significant increased risk of death (OR 1.29, 95 per cent c.i. 0.93 to 1.79, P = 0.121). Conclusion: CHOLECOVID provides a unique overview of the treatment of patients with cholecystitis across the globe during the first months of the SARS-CoV-2 pandemic. The study highlights the need for system resilience in retention of elective surgical activity. Cholecystectomy was associated with a low risk of mortality and deferral of treatment results in an increase in avoidable morbidity that represents the non-COVID cost of this pandemic

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Reconstruction of extensive air shower images of the Large Size Telescope prototype of CTA using a novel likelihood technique

    Get PDF

    Development of an advanced SiPM camera for the Large Size Telescope of the Cherenkov TelescopeArray Observatory

    Get PDF
    Silicon photomultipliers (SiPMs) have become the baseline choice for cameras of the small-sized telescopes (SSTs) of the Cherenkov Telescope Array (CTA). On the other hand, SiPMs are relatively new to the field and covering large surfaces and operating at high data rates still are challenges to outperform photomultipliers (PMTs). The higher sensitivity in the near infra-red and longer signals compared to PMTs result in higher night sky background rate for SiPMs. However, the robustness of the SiPMs represents a unique opportunity to ensure long-term operation with low maintenance and better duty cycle than PMTs. The proposed camera for large size telescopes will feature 0.05 degree pixels, low power and fast front-end electronics and a fully digital readout. In this work, we present the status of dedicated simulations and data analysis for the performance estimation. The design features and the different strategies identified, so far, to tackle the demanding requirements and the improved performance are described

    Commissioning of the camera of the first Large Size Telescope of the Cherenkov Telescope Array

    Get PDF
    The first Large Size Telescope (LST-1) of the Cherenkov Telescope Array has been operational since October 2018 at La Palma, Spain. We report on the results obtained during the camera commissioning. The noise level of the readout is determined as a 0.2 p.e. level. The gain of PMTs are well equalized within 2% variation, using the calibration flash system. The eect of the night sky background on the signal readout noise as well as the PMT gain estimation are also well evaluated. Trigger thresholds are optimized for the lowest possible gamma-ray energy threshold and the trigger distribution synchronization has been achieved within 1 ns precision. Automatic rate control realizes the stable observation with 1.5% rate variation over 3 hours. The performance of the novel DAQ system demonstrates a less than 10% dead time for 15 kHz trigger rate even with sophisticated online data correction

    Multi-wavelength study of the galactic PeVatron candidate LHAASO J2108+5157

    Get PDF
    LHAASO J2108+5157 is one of the few known unidentified Ultra-High-Energy (UHE) gamma-ray sources with no Very-High-Energy (VHE) counterpart, recently discovered by the LHAASO collaboration. We observed LHAASO J2108+5157 in the X-ray band with XMM-Newton in 2021 for a total of 3.8 hours and at TeV energies with the Large-Sized Telescope prototype (LST-1), yielding 49 hours of good quality data. In addition, we analyzed 12 years of Fermi-LAT data, to better constrain emission of its High-Energy (HE) counterpart 4FGL J2108.0+5155. We found an excess (3.7 sigma) in the LST-1 data at energies E > 3 TeV. Further analysis in the whole LST-1 energy range assuming a point-like source, resulted in a hint (2.2 sigma) of hard emission which can be described with a single power law with photon index Gamma = 1.6 +- 0.2 between 0.3 - 100 TeV. We did not find any significant extended emission which could be related to a Supernova Remnant (SNR) or Pulsar Wind Nebula (PWN) in the XMM-Newton data, which puts strong constraints on possible synchrotron emission of relativistic electrons. The LST-1 and LHAASO observations can be explained as inverse Compton dominated leptonic emission of relativistic electrons with cutoff energy of 100+70-30 TeV. The low magnetic field in the source imposed by the X-ray upper limits on synchrotron emission is compatible with a hypothesis of a TeV halo. Furthermore, the spectral properties of the HE counterpart are consistent with a hypothesis of Geminga-like pulsar, which would be able to power the VHE-UHE emission. LST-1 and Fermi-LAT upper limits impose strong constraints on hadronic scenario of pi-0 decay dominated emission from accelerated protons interacting with nearby molecular clouds, requiring hard spectral index, which is incompatible with the standard diffusive acceleration scenario
    corecore