6,623 research outputs found

    Equivariant KK-theory of GKM bundles

    Get PDF
    Given a fiber bundle of GKM spaces, π ⁣:MB\pi\colon M\to B, we analyze the structure of the equivariant KK-ring of MM as a module over the equivariant KK-ring of BB by translating the fiber bundle, π\pi, into a fiber bundle of GKM graphs and constructing, by combinatorial techniques, a basis of this module consisting of KK-classes which are invariant under the natural holonomy action on the KK-ring of MM of the fundamental group of the GKM graph of BB. We also discuss the implications of this result for fiber bundles π ⁣:MB\pi\colon M\to B where MM and BB are generalized partial flag varieties and show how our GKM description of the equivariant KK-ring of a homogeneous GKM space is related to the Kostant-Kumar description of this ring.Comment: 15 page

    Non-commutative integrable systems on bb-symplectic manifolds

    Get PDF
    In this paper we study non-commutative integrable systems on bb-Poisson manifolds. One important source of examples (and motivation) of such systems comes from considering non-commutative systems on manifolds with boundary having the right asymptotics on the boundary. In this paper we describe this and other examples and we prove an action-angle theorem for non-commutative integrable systems on a bb-symplectic manifold in a neighbourhood of a Liouville torus inside the critical set of the Poisson structure associated to the bb-symplectic structure

    Quantum geometry from phase space reduction

    Full text link
    In this work we give an explicit isomorphism between the usual spin network basis and the direct quantization of the reduced phase space of tetrahedra. The main outcome is a formula that describes the space of SU(2) invariant states by an integral over coherent states satisfying the closure constraint exactly, or equivalently, as an integral over the space of classical tetrahedra. This provides an explicit realization of theorems by Guillemin--Sternberg and Hall that describe the commutation of quantization and reduction. In the final part of the paper, we use our result to express the FK spin foam model as an integral over classical tetrahedra and the asymptotics of the vertex amplitude is determined.Comment: 33 pages, 1 figur

    Geometric Prequantization of the Moduli Space of the Vortex equations on a Riemann surface

    Full text link
    The moduli space of solutions to the vortex equations on a Riemann surface are well known to have a symplectic (in fact K\"{a}hler) structure. We show this symplectic structure explictly and proceed to show a family of symplectic (in fact, K\"{a}hler) structures ΩΨ0\Omega_{\Psi_0} on the moduli space, parametrised by Ψ0\Psi_0, a section of a line bundle on the Riemann surface. Next we show that corresponding to these there is a family of prequantum line bundles PΨ0{\mathcal P}_{\Psi_0} on the moduli space whose curvature is proportional to the symplectic forms ΩΨ0\Omega_{\Psi_0}.Comment: 8 page

    From twistors to twisted geometries

    Full text link
    In a previous paper we showed that the phase space of loop quantum gravity on a fixed graph can be parametrized in terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete geometry of a cellular decomposition dual to the graph. Here we unravel the origin of the phase space from a geometric interpretation of twistors.Comment: 9 page

    Minimal Universal Two-qubit Quantum Circuits

    Full text link
    We give quantum circuits that simulate an arbitrary two-qubit unitary operator up to global phase. For several quantum gate libraries we prove that gate counts are optimal in worst and average cases. Our lower and upper bounds compare favorably to previously published results. Temporary storage is not used because it tends to be expensive in physical implementations. For each gate library, best gate counts can be achieved by a single universal circuit. To compute gate parameters in universal circuits, we only use closed-form algebraic expressions, and in particular do not rely on matrix exponentials. Our algorithm has been coded in C++.Comment: 8 pages, 2 tables and 4 figures. v3 adds a discussion of asymetry between Rx, Ry and Rz gates and describes a subtle circuit design problem arising when Ry gates are not available. v2 sharpens one of the loose bounds in v1. Proof techniques in v2 are noticeably revamped: they now rely less on circuit identities and more on directly-computed invariants of two-qubit operators. This makes proofs more constructive and easier to interpret as algorithm

    Manifolds associated with (Z2)n(Z_2)^n-colored regular graphs

    Full text link
    In this article we describe a canonical way to expand a certain kind of (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graphs into closed nn-manifolds by adding cells determined by the edge-colorings inductively. We show that every closed combinatorial nn-manifold can be obtained in this way. When n3n\leq 3, we give simple equivalent conditions for a colored graph to admit an expansion. In addition, we show that if a (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graph admits an nn-skeletal expansion, then it is realizable as the moment graph of an (n+1)(n+1)-dimensional closed (Z2)n+1(\mathbb Z_2)^{n+1}-manifold.Comment: 20 pages with 9 figures, in AMS-LaTex, v4 added a new section on reconstructing a space with a (Z2)n(Z_2)^n-action for which its moment graph is a given colored grap

    Cohomology of GKM Fiber Bundles

    Get PDF
    The equivariant cohomology ring of a GKM manifold is isomorphic to the cohomology ring of its GKM graph. In this paper we explore the implications of this fact for equivariant fiber bundles for which the total space and the base space are both GKM and derive a graph theoretical version of the Leray-Hirsch theorem. Then we apply this result to the equivariant cohomology theory of flag varieties.Comment: The paper has been accepted by the Journal of Algebraic Combinatorics. The final publication is available at springerlink.co

    Noncommutative geometry and lower dimensional volumes in Riemannian geometry

    Full text link
    In this paper we explain how to define "lower dimensional'' volumes of any compact Riemannian manifold as the integrals of local Riemannian invariants. For instance we give sense to the area and the length of such a manifold in any dimension. Our reasoning is motivated by an idea of Connes and involves in an essential way noncommutative geometry and the analysis of Dirac operators on spin manifolds. However, the ultimate definitions of the lower dimensional volumes don't involve noncommutative geometry or spin structures at all.Comment: 12 page

    Mg II Absorption Systems in SDSS QSO Spectra

    Full text link
    We present the results of a MgII absorption-line survey using QSO spectra from the SDSS EDR. Over 1,300 doublets with rest equivalent widths greater than 0.3\AA and redshifts 0.366z2.2690.366 \le z \le 2.269 were identified and measured. We find that the λ2796\lambda2796 rest equivalent width (W0λ2796W_0^{\lambda2796}) distribution is described very well by an exponential function N/W0λ2796=NWeW0W\partial N/\partial W_0^{\lambda2796} = \frac{N^*}{W^*} e^{-\frac{W_0}{W^*}}, with N=1.187±0.052N^*=1.187\pm0.052 and W=0.702±0.017W^*=0.702\pm0.017\AA. Previously reported power law fits drastically over-predict the number of strong lines. Extrapolating our exponential fit under-predicts the number of W00.3W_0 \le 0.3\AA systems, indicating a transition in dN/dW0dN/dW_0 near W00.3W_0 \simeq 0.3\AA. A combination of two exponentials reproduces the observed distribution well, suggesting that MgII absorbers are the superposition of at least two physically distinct populations of absorbing clouds. We also derive a new redshift parameterization for the number density of W0λ27960.3W_0^{\lambda2796} \ge 0.3\AA lines: N=1.001±0.132(1+z)0.226±0.170N^*=1.001\pm0.132(1+z)^{0.226\pm0.170} and W=0.443±0.032(1+z)0.634±0.097W^*=0.443\pm0.032(1+z)^{0.634\pm 0.097}\AA. We find that the distribution steepens with decreasing redshift, with WW^* decreasing from 0.80±0.040.80\pm0.04\AA at z=1.6z=1.6 to 0.59±0.020.59\pm0.02\AA at z=0.7z=0.7. The incidence of moderately strong MgII λ2796\lambda2796 lines does not show evidence for evolution with redshift. However, lines stronger than 2\approx 2\AA show a decrease relative to the no-evolution prediction with decreasing redshift for z1z \lesssim 1. The evolution is stronger for increasingly stronger lines. Since W0W_0 in saturated absorption lines is an indicator of the velocity spread of the absorbing clouds, we interpret this as an evolution in the kinematic properties of galaxies from moderate to low z.Comment: 50 pages, 26 figures, accepted for publication in Ap
    corecore