EQUIVARIANT K-THEORY OF GKM BUNDLES

VICTOR GUILLEMIN, SILVIA SABATINI, AND CATALIN ZARA

Abstract

Given a fiber bundle of GKM spaces, $\pi: M \rightarrow B$, we analyze the structure of the equivariant K-ring of M as a module over the equivariant K-ring of B by translating the fiber bundle, π, into a fiber bundle of GKM graphs and constructing, by combinatorial techniques, a basis of this module consisting of K-classes which are invariant under the natural holonomy action on the K-ring of M of the fundamental group of the GKM graph of B. We also discuss the implications of this result for fiber bundles $\pi: M \rightarrow B$ where M and B are generalized partial flag varieties and show how our GKM description of the equivariant K-ring of a homogeneous GKM space is related to the Kostant-Kumar description of this ring.

MSC: Primary 55R91; Secondary 19L47; 05C90
Keywords: Equivariant K-theory; Equivariant fiber bundles; GKM manifolds; Flag manifolds

Contents

1. Introduction
2. K-theory of integral GKM graphs 2
3. GKM fiber bundles 4
4. Flag manifolds as GKM fiber bundles 6
5. K-theory of GKM fiber bundles 7
6. Invariant classes 9
7. Classes on projective spaces 9
8. Invariant bases on flag manifolds 12
9. The Kostant-Kumar description 14
References

1. Introduction

Let T be an n-torus and M a compact T manifold. The action of T on M is said to be GKM if M^{T} is finite and if, in addition, for every codimension one subtorus, T^{\prime}, of T the connected components of $M^{T^{\prime}}$ are of dimension at most 2 . An implication of this assumption is that these fixed point components are either isolated points or diffeomorphic copies of S^{2} with its standard S^{1} action, and a convenient way of encoding this fixed point data is by means of the GKM graph, Γ, of M. By definition, the S^{2} 's above are the edges of this graph, the points on the fixed point set, M^{T}, are the vertices of this graph and two vertices are joined by

[^0]an edge if they are the fixed points for the S^{1} action on the S^{2} representing that edge. Moreover, to keep track of which $T^{\prime \prime}$ s correspond to which edges, one defines a labeling function α on the set of oriented edges of Γ with values in the weight lattice of T. This function (the "axial function" of Γ) assigns to each oriented edge the weight of the isotropy action of T on the tangent space to the north pole of the S^{2} corresponding to this edge. (The orientation of this S^{2} enables one to distinguish the north pole from the south pole.)

The concept of GKM space is due to Goresky-Kottwitz-MacPherson, who showed that the equivariant cohomology ring, $H_{T}(M)$, can be computed from (Γ, α) (see [GKM]). Then Allen Knutson and Ioanid Rosu (see [R]) proved the much harder result that this is also true for the equivariant K-theory ring, $K_{T}(M)$. (We will give a graph theoretic description of this ring in section 2 below.)

Suppose now that M and B are GKM manifolds and $\pi: M \rightarrow B$ a T-equivariant fiber bundle. Then the ring $H_{T}(M)$ becomes a module over the ring $H_{T}(B)$ and in GSZ1 we analyzed this module structure from a combinatorial perspective by showing that the fiber bundle π of manifolds gives rise to a fiber bundle, $\pi: \Gamma_{M} \rightarrow \Gamma_{B}$ of GKM graphs, and showing that the salient module structure is encoded in this graph fiber bundle. In this article we will prove analogous results in K-theory. More explicitly in the first part of this article (from section 2 to (4) we will review the basic facts about GKM graphs, the notion of "fiber bundle" for these graphs and the definition of the K-theory ring of a graph-axial function pair, and we will also discuss an important class of examples: the graphs associated with GKM spaces of the form $M=G / P$, where G is a complex reductive Lie group and P a parabolic subgroup of G. The main results of this paper are discussed in section 5 and 6. In section 5 we prove that for a fiber bundle of GKM graphs $(\Gamma, \alpha) \rightarrow\left(\Gamma_{B}, \alpha_{B}\right)$ a set of elements $c_{1} \ldots, c_{k}$ of $K_{\alpha}(\Gamma)$ is a free set of generators of $K_{\alpha}(\Gamma)$ as a module over $K_{\alpha_{B}}\left(\Gamma_{B}\right)$, providing their restrictions to $K_{\alpha_{p}}\left(\Gamma_{p}\right)$ are a basis for $K_{\alpha_{p}}\left(\Gamma_{p}\right)$, where Γ_{p} is the graph theoretical fiber of (Γ, α) over a vertex p of Γ_{B}. Then in section 6 we describe an important class of such generators. One property of a GKM fiber bundle is a holonomy action of the fundamental group of Γ_{B} on the fiber and we show how a collection of holonomy invariant generating classes $c_{1}^{\prime}, \ldots, c_{k}^{\prime}$ of $K_{\alpha_{p}}\left(\Gamma_{p}\right)$ extend canonically to a free set of generators c_{1}, \ldots, c_{k} of $K_{\alpha}(\Gamma)$. In section 7 and 8 we describe how these results apply to concrete examples: special cases of the G / P examples mentioned above. Finally in section 9 we relate our GKM description of the equivariant K-ring, $K_{T}(G / P)$, to a concise and elegant alternative description of this ring by Bertram Kostant and Shrawan Kumar in KK, and analyze from their perspective the fiber bundle $G / B \rightarrow G / P$.

To conclude these introductory remarks we would like to thank Tudor Ratiu for his support and encouragement and Tara Holm for helpful suggestions about the relations between GKM and Kostant-Kumar.

2. K-THEORY OF integral GKM graphs

Let $\Gamma=(V, E)$ be a d-valent graph, where V is the set of vertices, and E the set of oriented edges; for every edge $e \in E$ from p to q, we denote by \bar{e} the edge from q to p. Let $i: E \rightarrow V$ (resp. $t: E \rightarrow V$) be the map which assigns to each oriented edge e its initial (resp. terminal) vertex (so $i(e)=t(\bar{e})$ and $t(e)=i(\bar{e})$); for every $p \in V$ let E_{p} be the set of edges whose initial vertex is p.

Let T be an n-dimensional torus; we define a " T-action on Γ " by the following recipe.
Definition 2.1. Let $e=(p, q)$ be an oriented edge in E. Then a connection along e is a bijection $\nabla_{e}: E_{p} \rightarrow E_{q}$ such that $\nabla_{e}(e)=\bar{e}$. A connection on the graph Γ is a family $\nabla=\left\{\nabla_{e}\right\}_{e \in E}$ satisfying $\nabla_{\bar{e}}=\nabla_{e}^{-1}$ for every $e \in \Gamma$.

Let \mathfrak{t}^{*} be the dual of the Lie algebra of T and \mathbb{Z}_{T}^{*} its weight lattice.
Definition 2.2. Let ∇ be a connection on Γ. A ∇-compatible integral axial function on Γ is a map $\alpha: E \rightarrow \mathbb{Z}_{T}^{*}$ satisfying the following conditions:
(1) $\alpha(\bar{e})=-\alpha(e)$;
(2) for every $p \in V$ the vectors $\left\{\alpha(e) \mid e \in E_{p}\right\}$ are pairwise linearly independent;
(3) for every edge $e=(p, q)$ and every $e^{\prime} \in E_{p}$ we have

$$
\alpha\left(\nabla_{e}\left(e^{\prime}\right)\right)-\alpha\left(e^{\prime}\right)=m\left(e, e^{\prime}\right) \alpha(e)
$$

where $m\left(e, e^{\prime}\right)$ is an integer which depends on e and e^{\prime}.
An integral axial function on Γ is a map $\alpha: E \rightarrow \mathbb{Z}_{T}^{*}$ which is ∇-compatible, for some connection ∇ on Γ.
Definition 2.3. An integral GKM graph is a pair (Γ, α) consisting of a regular graph Γ and an integral axial function $\alpha: E \rightarrow \mathbb{Z}_{T}^{*}$
Remark 2.4. The graphs we described in the introduction are examples of such graphs. In particular condition 2 in definition 2.2 is a consequence of the fact that, for every codimension one subgroup of T, its fixed point components are of dimension at most two, and condition 3 a consequence of the fact that this subgroup acts trivially on the tangent bundles of these component.

Observe that an integral GKM graph is a particular case of an abstract GKM graph, as defined in [GSZ1]; here we require α to take values in \mathbb{Z}_{T}^{*} rather than in \mathfrak{t}^{*}, and in definition $2.2(3)$ we require $\alpha\left(\nabla_{e}\left(e^{\prime}\right)\right)-\alpha\left(e^{\prime}\right)$ to be an integer multiple of $\alpha(e)$, for every $e=(p, q) \in E$ and $e^{\prime} \in E_{p}$. The necessity of these integrality properties will be clear from the definition of T-action on Γ. Let $R(T)$ be the representation ring of T; notice that $R(T)$ can be identified with the character ring of T, i.e. with the ring of finite sums

$$
\begin{equation*}
\sum_{k} m_{k} e^{2 \pi \sqrt{-1} \alpha_{k}} \tag{2.1}
\end{equation*}
$$

where the m_{k} 's are integers and $\alpha_{k} \in \mathbb{Z}_{T}^{*}$. So giving an axial function $\alpha: E \rightarrow \mathbb{Z}_{T}^{*}$ is equivalent to giving a map which assigns to each edge $e \in E$ a one dimensional representation ρ_{e}, whose character $\chi_{e}: T \rightarrow S^{1}$ is given by

$$
\chi_{e}\left(e^{2 \pi \sqrt{-1} \xi}\right)=e^{2 \pi \sqrt{-1} \alpha(e)(\xi)} .
$$

For every $e \in E$, let $T_{e}=\operatorname{ker}\left(\chi_{e}\right)$, and consider the restriction map

$$
r_{e}: R(T) \rightarrow R\left(T_{e}\right) .
$$

Then for every vertex $p \in V$, we also obtain a d-dimensional representation

$$
\nu_{p} \simeq \bigoplus_{e \in E_{p}} \rho_{e}
$$

which, by definition 2.2 (3) satisfies

$$
\begin{equation*}
r_{e}\left(\nu_{i(e)}\right) \simeq r_{e}\left(\nu_{t(e)}\right) . \tag{2.2}
\end{equation*}
$$

So an integral axial function $\alpha: E \rightarrow \mathbb{Z}_{T}^{*}$ defines a one-dimensional representation ρ_{e} for every edge $e \in E$ and for every $p \in V$ a d-dimensional representation ν_{p} satisfying (2.2); this is what we refer to as a T-action on Γ.

Remark 2.5. Henceforth in this article all GKM graphs will, unless otherwise specified, be integral GKM graphs.

We will now define the K-ring $K_{\alpha}(\Gamma)$ of (Γ, α). As we remarked in the introduction, Knutson and Rosu have proved that if (Γ, α) is the GKM graph associated to a GKM manifold M, then

$$
K_{\alpha}(\Gamma) \simeq K_{T}(M)
$$

where $K_{T}(M)$ is the equivariant K-theory ring of M (cf. [R]).
Let $\operatorname{Maps}(V, R(T))$ be the ring of maps which assign to each vertex $p \in V$ a representation of T. Following the argument in [R , we define a subring of $\operatorname{Maps}(V, R(T))$, called the ring of K-classes of (Γ, α).

Definition 2.6. Let f be an element of $\operatorname{Maps}(V, R(T))$. Then f is a K-class of (Γ, α) if for every edge $e=(p, q) \in E$

$$
\begin{equation*}
r_{e}(f(p))=r_{e}(f(q)) \tag{2.3}
\end{equation*}
$$

Observe that using the identification of $R(T)$ with the ring of finite sums (2.1), condition (2.3) is equivalent to saying that for every $e=(p, q) \in E$

$$
\begin{equation*}
f(p)-f(q)=\beta\left(1-e^{2 \pi \sqrt{-1} \alpha(e)}\right) \tag{2.4}
\end{equation*}
$$

for some β in $R(T)$.
If f and g are two K-classes, then also $f+g$ and $f g$ are; so the set of K-classes is a subring of $\operatorname{Maps}(V, R(T))$.

Definition 2.7. The $K-$ ring of (Γ, α), denoted by $K_{\alpha}(\Gamma)$, is the subring of $\operatorname{Maps}(V, R(T))$ consisting of all the K-classes.

3. GKM FIBER BUNDLES

Let $\left(\Gamma_{1}, \alpha_{1}\right)$ and $\left(\Gamma_{2}, \alpha_{2}\right)$ be GKM graphs, where $\Gamma_{1}=\left(V_{1}, E_{1}\right), \Gamma_{2}=\left(V_{2}, E_{2}\right)$, $\alpha_{1}: E_{1} \rightarrow \mathbb{Z}_{T_{1}}^{*} \subset \mathfrak{t}_{1}^{*}$ and $\alpha_{2}: E_{2} \rightarrow \mathbb{Z}_{T_{2}}^{*} \subset \mathfrak{t}_{2}^{*}$.

Definition 3.1. An isomorphism of GKM graphs $\left(\Gamma_{1}, \alpha_{1}\right)$ and $\left(\Gamma_{2}, \alpha_{2}\right)$ is a pair (Φ, Ψ), where $\Phi: \Gamma_{1} \rightarrow \Gamma_{2}$ is an isomorphism of graphs, and $\Psi: \mathfrak{t}_{1}^{*} \rightarrow \mathfrak{t}_{2}^{*}$ is an isomorphism of linear spaces such that $\Psi\left(\mathbb{Z}_{T_{1}}^{*}\right)=\mathbb{Z}_{T_{2}}^{*}$, and for every edge (p, q) of Γ_{1} we have $\alpha_{2}(\Phi(p), \Phi(q))=\Psi\left(\alpha_{1}(p, q)\right)$.

By definition, if (Φ, Ψ) is an isomorphism of GKM graphs, the diagram

commutes. We can extend the map Ψ to be a ring homomorphism from $R\left(T_{1}\right)$ to $R\left(T_{2}\right)$ using the identification (2.1) and defining $\Psi\left(e^{2 \pi \sqrt{-1} \alpha}\right)=e^{2 \pi \sqrt{-1} \Psi(\alpha)}$, for every $\alpha \in \mathbb{Z}_{T_{1}}^{*}$.

Given $f \in \operatorname{Maps}\left(V_{2}, R\left(T_{2}\right)\right)$, let $\Upsilon^{*}(f) \in \operatorname{Maps}\left(V_{1}, R\left(T_{1}\right)\right)$ be the map defined by $\Upsilon^{*}(f)(p)=\Psi^{-1}(f(\Phi(p)))$. From the commutativity of the diagram (3.1) it's easy to see that if $f \in K_{\alpha_{2}}\left(\Gamma_{2}\right)$ then $\Upsilon^{*}(f) \in K_{\alpha_{1}}\left(\Gamma_{1}\right)$, and Υ^{*} defines an isomorphism between the two K-rings.

We are now ready to define the main combinatorial objects of this paper, GKM fiber bundles. Let (Γ, α) and $\left(\Gamma_{B}, \alpha_{B}\right)$ be two GKM graphs, with α and α_{B} having images in the same weight lattice \mathbb{Z}_{T}^{*}. Let $\pi: \Gamma=(V, E) \rightarrow \Gamma_{B}=\left(V_{B}, E_{B}\right)$ be a surjective morphism of graphs. By that we mean that π maps the vertices of Γ onto the vertices of Γ_{B}, such that, for every edge $e=(p, q)$ of Γ, either $\pi(p)=\pi(q)$ (in which case e is called vertical), or $(\pi(p), \pi(q))$ is an edge of Γ_{B} (in which case e is called horizontal). Such a morphism of graphs induces a map $(d \pi)_{p}: H_{p} \rightarrow E_{\pi(p)}$ from the set of horizontal edges at $p \in V$ to the set of all edges starting at $\pi(p) \in V_{B}$. The first condition we impose for π to be a GKM fiber bundle is the following:

1: For all vertices $p \in V,(d \pi)_{p}: H_{p} \rightarrow E_{\pi(p)}$ is a bijection compatible with the axial functions:

$$
\alpha_{B}\left((d \pi)_{p}(e)\right)=\alpha(e)
$$

for all $e=(p, q) \in H_{p}$.
The second condition has to do with the connection on Γ and Γ_{B}.
2: The connection along edges of Γ moves horizontal edges to horizontal edges, and vertical edges to vertical edges. Moreover, the restriction of the connection of Γ to horizontal edges is compatible with the connection on Γ_{B}.
For every vertex $p \in \Gamma_{B}$, let $V_{p}=\pi^{-1}(p) \subset V$ and Γ_{p} the induced subgraph of Γ with vertex set V_{p}. If the map π satisfies condition 1 , then, for every edge $e=(p, q)$ of Γ_{B}, it induces a bijection $\Phi_{p, q}: V_{p} \rightarrow V_{q}$ by $\Phi_{p, q}\left(p^{\prime}\right)=q^{\prime}$ if and only if $(p, q)=(d \pi)_{p}\left(p^{\prime}, q^{\prime}\right)$.

3: For every edge $(p, q) \in \Gamma_{B}, \Phi_{p, q}: \Gamma_{p} \rightarrow \Gamma_{q}$ is an isomorphism of graphs compatible with the connection ∇ on Γ in the following sense: for every lift $e^{\prime}=\left(p_{1}, q_{1}\right)$ of $e=(p, q)$ at p_{1} and every edge $e^{\prime \prime}=\left(p_{1}, p_{2}\right)$ of Γ_{p} the connection along the horizontal edge $\left(p_{1}, q_{1}\right)$ moves the vertical edge $\left(p_{1}, p_{2}\right)$ to the vertical edge $\left(q_{1}, q_{2}\right)$, where $q_{i}=\Phi_{p, q}\left(p_{i}\right), i=1,2$.
We can endow Γ_{p} with a GKM structure, which is just the restriction of the GKM structure of (Γ, α) to Γ_{p}. The axial function on Γ_{p} is the restriction of $\alpha: E \rightarrow \mathbb{Z}_{T}^{*}$ to the edges of Γ_{p}; we refer to it as α_{p}, and it takes values in \mathfrak{v}_{p}^{*}, the subspace of \mathfrak{t}^{*} generated by values of axial functions $\alpha(e)$, for edges e of Γ_{p}. The next condition we impose on π is the following:

4: For every edge (p, q) of Γ_{B}, there exists an isomorphism of GKM graphs

$$
\Upsilon_{p, q}=\left(\Phi_{p, q}, \Psi_{p, q}\right):\left(\Gamma_{p}, \alpha_{p}\right) \rightarrow\left(\Gamma_{q}, \alpha_{q}\right) .
$$

By property (3) of definition 2.2 and the fact that $\alpha_{B}(e)=\alpha\left(e^{\prime}\right)$ we have

$$
\begin{equation*}
\alpha\left(\Phi_{p, q}\left(p_{1}\right), \Phi_{p, q}\left(p_{2}\right)\right)-\alpha\left(p_{1}, p_{2}\right)=m^{\prime}\left(p_{1}, p_{2}\right) \alpha_{B}(e) \tag{3.2}
\end{equation*}
$$

where $m^{\prime}\left(p_{1}, p_{2}\right)$ is an integer; so by the commutativity of (3.1) we have

$$
\begin{equation*}
\Psi_{p, q}\left(\alpha\left(p_{1}, p_{2}\right)\right)-\alpha\left(p_{1}, p_{2}\right)=m^{\prime}\left(p_{1}, p_{2}\right) \alpha_{B}(e) \tag{3.3}
\end{equation*}
$$

Condition (3.3) defines a map $m^{\prime}: E_{p} \rightarrow \mathbb{Z}$, where E_{p} is the set of edges of Γ_{p}. The next condition is a strengthening of this.

5: There exists a function $m: \mathfrak{v}_{p}^{*} \cap \mathbb{Z}_{T}^{*} \rightarrow \mathbb{Z}$ such that

$$
\begin{equation*}
\Psi_{p, q}(x)=x+m(x) \alpha_{B}(p, q) . \tag{3.4}
\end{equation*}
$$

Observe that if Γ_{B} is connected, then all the fibers of π are isomorphic as GKM graphs. More precisely, for any two vertices $p, q \in V_{B}$ let γ be a path in Γ_{B} from p to q, i.e. $\gamma: p=p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{m}=q$. Then the map

$$
\Upsilon_{\gamma}=\Upsilon_{p_{m-1}, p_{m}} \circ \cdots \circ \Upsilon_{p_{0}, p_{1}}:\left(\Gamma_{p}, \alpha_{p}\right) \rightarrow\left(\Gamma_{q}, \alpha_{q}\right)
$$

defines an isomorphism between the GKM graphs $\left(\Gamma_{p}, \alpha_{p}\right)$ and (Γ_{q}, α_{q}). As observed before, this isomorphism restricts to an isomorphism between the two K rings, $\Upsilon_{\gamma}^{*}: K_{\alpha_{q}}\left(\Gamma_{q}\right) \rightarrow K_{\alpha_{p}}\left(\Gamma_{p}\right)$, which is not an isomorphism of $R(T)$-modules, unless the linear isomorphism

$$
\Psi_{\gamma}=\Psi_{p_{0}, p_{1}} \circ \cdots \circ \Psi_{p_{m-1}, p_{m}}: \mathfrak{v}_{q}^{*} \rightarrow \mathfrak{v}_{p}^{*}
$$

is the identity.
Let $\Omega(p)$ be the set of all loops in Γ_{B} that start and end at p, i.e. the set of paths $\gamma: p_{0} \rightarrow p_{1} \rightarrow \cdots \rightarrow p_{m-1} \rightarrow p_{m}$ such that $p_{0}=p_{m}=p$. Then every such γ determines a GKM isomorphism Υ_{γ} of the fiber $\left(\Gamma_{p}, \alpha_{p}\right)$. The holonomy group of the fiber $\left(\Gamma_{p}, \alpha_{p}\right)$ is the subgroup of the GKM isomorphisms of the fiber, $\operatorname{Aut}\left(\Gamma_{p}, \alpha_{p}\right)$, given by

$$
\operatorname{Hol}_{\pi}\left(\Gamma_{p}\right)=\left\{\Upsilon_{\gamma} \mid \gamma \in \Omega(p)\right\} \leqslant \operatorname{Aut}\left(\Gamma_{p}, \alpha_{p}\right)
$$

4. Flag manifolds as GKM fiber bundles

In this section we will discuss some important examples of GKM fiber bundles coming from generalized partial flag varieties.

Let G be a complex semisimple Lie group, \mathfrak{g} its Lie algebra, $\mathfrak{h} \subset \mathfrak{g}$ a Cartan subalgebra and $\mathfrak{t} \subset \mathfrak{h}$ a compact real form; let T be the compact torus whose Lie algebra is \mathfrak{t}. Let $\Delta \subset \mathbb{Z}_{T}^{*} \subset \mathfrak{t}^{*}$ be the set of roots and

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}
$$

the Cartan decomposition of \mathfrak{g}. Let $\Delta_{0}=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\} \subset \Delta$ be a choice of simple roots and Δ^{+}the corresponding positive roots. The set of positive roots determines a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ given by

$$
\mathfrak{b}=\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha} .
$$

Let $\Sigma \subset \Delta_{0}$ be a subset of simple roots, and $B \leqslant P(\Sigma) \leqslant G$, where B is the Borel subgroup whose Lie algebra is \mathfrak{b} and $P(\Sigma)$ the parabolic subgroup of G corresponding to Σ. Then $M=G / P(\Sigma)$ is a (generalized) partial flag manifold. In particular, if $\Sigma=\emptyset$, then $P(\emptyset)=B$, and we refer to $M=G / B$ as the (generalized) complete flag manifold.

The torus T with Lie algebra \mathfrak{t} acts on $M=G / P(\Sigma)$ by left multiplication on G; this action determines a GKM structure on M with GKM graph (Γ, α). In fact, let W be the Weyl group of \mathfrak{g} and $W(\Sigma)$ the subgroup of W generated by reflections across the simple roots in Σ, and $\langle\Sigma\rangle$ the positive roots which can be written as a
linear combination of the roots in Σ. Then the vertices of Γ, corresponding to the T-fixed points, are in bijection with the right cosets

$$
W / W(\Sigma)=\{v W(\Sigma) \mid v \in W\}=\{[v] \mid v \in W\}
$$

where $[v]=v W(\Sigma)$ is the right $W(\Sigma)$-coset containing v. Two vertices $[v]$ and $[w]$ are joined by an edge if and only if there exists $\beta \in \Delta^{+} \backslash\langle\Sigma\rangle$ such that $[v]=\left[w s_{\beta}\right]$; moreover the axial function α on the edge $e=\left([v],\left[v s_{\beta}\right]\right)$ is given by $\alpha\left([v],\left[v s_{\beta}\right]\right)=$ $v \beta$; it's easy to see that this label is well defined. Moreover, given an edge $e^{\prime}=$ $\left([v],\left[v s_{\beta^{\prime}}\right]\right)$ starting at $[v]$, a natural choice of a connection along e is given by $\nabla_{e} e^{\prime}=\left(\left[v s_{\beta}\right],\left[v s_{\beta} s_{\beta^{\prime}}\right]\right)$. So

$$
\alpha\left(\nabla_{e} e^{\prime}\right)-\alpha\left(e^{\prime}\right)=v s_{\beta} \beta^{\prime}-v \beta^{\prime}=s_{v \beta} v \beta^{\prime}-v \beta^{\prime}=m\left(e, e^{\prime}\right) v \beta
$$

where $m\left(e, e^{\prime}\right)$ is a Cartan integer; so this connection satisfies property (3) of definition 2.2.

Consider the natural T-equivariant projection $\pi: G / B \rightarrow G / P(\Sigma)$; this map induces a projection map on the corresponding GKM graphs $\pi:(\Gamma, \alpha) \rightarrow\left(\Gamma_{B}, \alpha_{B}\right)$ given by $\pi(w)=[w]$ for every $w \in W$, where $[w]=w W(\Sigma)$. As we proved in GSZ1, section 4.3], π is a GKM fiber bundle. Moreover, let Γ_{0} be the GKM graph of the fiber containing the identity element of W; then

$$
\operatorname{Hol}_{\pi}\left(\Gamma_{0}\right) \simeq W(\Sigma)
$$

The key ingredient in the proof of this is the identification of the weights of the T action on the tangent space to the identity coset p_{0} of G / P with the complement of $\langle\Sigma\rangle$ in Δ^{+}. Namely for any such root α let $w \in W$ be the Weyl group element $w: \mathfrak{t} \rightarrow \mathfrak{t}$ associated with the reflection in the hyperplane $\alpha=0$. Then for the edge $e=\left(p_{0}, w p_{0}\right)$ of the GKM graph of G / P the GKM isomorphism of $\Gamma_{p_{0}}$ onto Γ_{p} is the isomorphism $\Phi_{p_{0}, p}$ associated with the left action of w on G / B and the T automorphism (3.4) is just the action of w on \mathfrak{t} given by compositions of reflections in the hyperplane $\alpha_{B}(p, q)=0$ in \mathfrak{t}, for some horizontal edge (p, q). (These results are also a byproduct of the identification of the GKM model of $K_{T}(G / P)$ with the Kostant-Kumar model which we will describe in section (9).

5. K-Theory of GKM fiber bundles

Given a GKM fiber bundle $\pi:(\Gamma, \alpha) \rightarrow\left(\Gamma_{B}, \alpha_{B}\right)$, we will describe the K-ring of (Γ, α) in terms of the K-ring of $\left(\Gamma_{B}, \alpha_{B}\right)$. In the proof of the main theorem we will need the following technical lemma.

Lemma 5.1. Let α and β be linearly independent weights in \mathfrak{t}^{*}, and P an element of $R(T)$. If $1-e^{2 \pi \sqrt{-1} \alpha}$ divides $\left(1-e^{2 \pi \sqrt{-1} \beta}\right) P$ then $1-e^{2 \pi \sqrt{-1} \alpha}$ divides P.

Proof. Let $\alpha=m \alpha_{1}$, for some $m \in \mathbb{Z}$, where α_{1} is a primitive element of the weight lattice in \mathfrak{t}^{*}. We can complete α_{1} to a basis $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{d}\right\}$ of the lattice. Let $x_{j}=e^{2 \pi \sqrt{-1} \alpha_{j}}$ for all $j=1, \ldots, d$.
Then by hypothesis $\left(1-x_{1}^{m}\right)$ divides $\left(1-x_{1}^{n} Q\left(x_{2}, \ldots, x_{d}\right)\right) P\left(x_{1}, \ldots, x_{d}\right)$ for some non-constant polynomial $Q\left(x_{2}, \ldots, x_{d}\right)$. Consider an element $\xi \in \mathfrak{t} \otimes \mathbb{C}$ such that $x_{1}(\xi)^{m}=1$; then $\left(1-x_{1}^{n} Q\left(x_{2}, \ldots, x_{d}\right)\right) P\left(x_{1}, \ldots, x_{d}\right)(\xi)=0$. Since in general $\left(1-x_{1}^{n} Q\left(x_{2}, \ldots, x_{d}\right)\right)(\xi) \neq 0$, this implies that $\left(1-x_{1}^{m}\right)$ divides $P\left(x_{1}, \ldots, x_{d}\right)$.

For every K-class $f: V_{B} \rightarrow R(T)$, define the pull-back $\pi^{*}(f): V \rightarrow R(T)$ by $\pi^{*}(f)(q)=f(\pi(q))$. It's easy to check that $\pi^{*}(f)$ is a K-class on (Γ, α). So $K_{\alpha}(\Gamma)$
contains $K_{\alpha_{B}}\left(\Gamma_{B}\right)$ as a subring, and the map $\pi^{*}: K_{\alpha_{B}}\left(\Gamma_{B}\right) \rightarrow K_{\alpha}(\Gamma)$ gives $K_{\alpha}(\Gamma)$ the structure of a $K_{\alpha_{B}}\left(\Gamma_{B}\right)$-module.
Definition 5.2. A K-class $h \in K_{\alpha}(\Gamma)$ is called basic if $h \in \pi^{*}\left(K_{\alpha_{B}}\left(\Gamma_{B}\right)\right)$.
We denote the subring of basic K-classes by $\left(K_{\alpha}(\Gamma)\right)_{\text {bas }}$; clearly we have

$$
\left(K_{\alpha}(\Gamma)\right)_{b a s} \simeq K_{\alpha_{B}}\left(\Gamma_{B}\right)
$$

Theorem 5.3. Let $\pi:(\Gamma, \alpha) \rightarrow\left(\Gamma_{B}, \alpha_{B}\right)$ be a GKM fiber bundle, and let c_{1}, \ldots, c_{m} be K-classes on Γ such that for every $p \in V_{B}$ the restriction of these classes to the fiber $\Gamma_{p}=\pi^{-1}(p)$ form a basis for the K-ring of the fiber. Then, as $K_{\alpha_{B}}\left(\Gamma_{B}\right)$ modules, $K_{\alpha}(\Gamma)$ is isomorphic to the free $K_{\alpha_{B}}\left(\Gamma_{B}\right)$-module on c_{1}, \ldots, c_{m}.
Proof. First of all, observe that any linear combination of c_{1}, \ldots, c_{m} with coefficients in $\left(K_{\alpha}(\Gamma)\right)_{\text {bas }} \simeq K_{\alpha_{B}}\left(\Gamma_{B}\right)$ is an element of $K_{\alpha}(\Gamma)$. Now we want to prove that the c_{i} 's are independent over $K_{\alpha_{B}}\left(\Gamma_{B}\right)$. In order to prove so, let $\sum_{k=1}^{m} \beta_{k} c_{k}=0$ for some $\beta_{1}, \ldots, \beta_{m} \in\left(K_{\alpha}(\Gamma)\right)_{\text {bas }}$. Let $\Gamma_{p}=\pi^{-1}(p)$ denote the fiber over $p \in B$, $\iota_{p}: \Gamma_{p} \rightarrow \Gamma$ the inclusion, and $\iota_{p}^{*}: K_{\alpha}(\Gamma) \rightarrow K_{\alpha}\left(\Gamma_{p}\right)$ the restriction to the $K-$ theory of the fiber. Then $\sum_{k=1}^{m} \iota_{p}^{*}\left(\beta_{k} c_{k}\right)=0$ for all $p \in B$. Since the β_{k} 's are basic K-classes, $\iota_{p}^{*}\left(\beta_{k}\right)$ is just an element of $R(T)$ for all k. But by assumption $\left\{\iota_{p}^{*}\left(c_{1}\right), \ldots, \iota_{p}^{*}\left(c_{m}\right)\right\}$ is a basis of $K_{\alpha}\left(\Gamma_{p}\right)$; so $\iota_{p}^{*}\left(\beta_{k}\right)=0$ for all $k=1, \ldots, m$, for all $p \in \Gamma_{B}$, which implies that $\beta_{k}=0$ for all k. We need to prove that the free $K_{\alpha_{B}}\left(\Gamma_{B}\right)$-module generated by c_{1}, \ldots, c_{m} is $K_{\alpha}(\Gamma)$.

Let $c \in K_{\alpha}(\Gamma)$. Since the classes $\iota_{p}^{*} c_{1}, \ldots, \iota_{p}^{*} c_{m}$ are a basis for $K_{\alpha}\left(\Gamma_{p}\right)$, there exist $\beta_{1}, \ldots, \beta_{m} \in \operatorname{Maps}(B, R(T))$ such that

$$
c=\sum_{k=1}^{m} \beta_{k} c_{k}
$$

we need to prove that the β_{k} 's belong to $\left(K_{\alpha}(\Gamma)\right)_{b a s}$ for all k. In order to prove this, it is sufficient to show that (2.4) is satisfied for every edge (p, q) of Γ_{B}. Let $e^{\prime}=\left(p^{\prime}, q^{\prime}\right)$ be the lift of (p, q) at $p^{\prime} \in \Gamma_{p}$. Then

$$
\begin{aligned}
c\left(q^{\prime}\right)-c\left(p^{\prime}\right) & =\sum_{k=1}^{m}\left(\beta_{k}(q) c_{k}\left(q^{\prime}\right)-\beta_{k}(p) c_{k}\left(p^{\prime}\right)\right) \\
& =\sum_{k=1}^{m}\left(\beta_{k}(q)-\beta_{k}(p)\right) c_{k}\left(p^{\prime}\right)+\sum_{k=1}^{m} \beta_{k}(q)\left(c_{k}\left(q^{\prime}\right)-c_{k}\left(p^{\prime}\right)\right) .
\end{aligned}
$$

Since c, c_{1}, \ldots, c_{m} belong to $K_{\alpha}(\Gamma)$, by (2.4) the differences $c\left(q^{\prime}\right)-c\left(p^{\prime}\right), c_{k}\left(q^{\prime}\right)-$ $c_{k}\left(p^{\prime}\right)$ are multiples of $\left(1-e^{2 \pi \sqrt{-1} \alpha\left(e^{\prime}\right)}\right)$, for all $k=1, \ldots, m$. Therefore, for all $p^{\prime} \in \Gamma_{p}$,

$$
\sum_{k=1}^{m}\left(\beta_{k}(q)-\beta_{k}(p)\right) c_{k}\left(p^{\prime}\right)=\left(1-e^{2 \pi \sqrt{-1} \alpha\left(e^{\prime}\right)}\right) \eta\left(p^{\prime}\right),
$$

where $\eta\left(p^{\prime}\right) \in R(T)$. We will show that $\eta: \Gamma_{p} \rightarrow R(T)$ belongs to $K_{\alpha}\left(\Gamma_{p}\right)$.
If p^{\prime} and $p^{\prime \prime}$ are vertices in Γ_{p}, joined by an edge ($p^{\prime}, p^{\prime \prime}$), then

$$
\sum_{k=1}^{m}\left(\beta_{k}(q)-\beta_{k}(p)\right)\left(c_{k}\left(p^{\prime \prime}\right)-c_{k}\left(p^{\prime}\right)\right)=\left(1-e^{2 \pi \sqrt{-1} \alpha\left(e^{\prime}\right)}\right)\left(\eta\left(p^{\prime \prime}\right)-\eta\left(p^{\prime}\right)\right)
$$

Each c_{k} is a K-class on Γ, so $c_{k}\left(p^{\prime \prime}\right)-c_{k}\left(p^{\prime}\right)$ is a multiple of $\left(1-e^{2 \pi \sqrt{-1} \alpha\left(p^{\prime}, p^{\prime \prime}\right)}\right)$, for all $k=1, \ldots, m$. Then $\left(1-e^{2 \pi \sqrt{-1} \alpha\left(p^{\prime}, p^{\prime \prime}\right)}\right)$ divides $\left(1-e^{2 \pi \sqrt{-1} \alpha\left(e^{\prime}\right)}\right)\left(\eta\left(p^{\prime \prime}\right)-\eta\left(p^{\prime}\right)\right)$.

But $\alpha\left(e^{\prime}\right)$ and $\alpha\left(p^{\prime}, p^{\prime \prime}\right)$ are linearly independent vectors. Therefore, by Lemma 5.1 $\left(1-e^{2 \pi \sqrt{-1} \alpha\left(p^{\prime}, p^{\prime \prime}\right)}\right)$ divides $\eta\left(p^{\prime \prime}\right)-\eta\left(p^{\prime}\right)$, and so η is a K-class on Γ_{p}.

Since the classes $\iota_{p}^{*} c_{1}, \ldots, \iota_{p}^{*} c_{m}$ are a basis for $K_{\alpha}\left(\Gamma_{p}\right)$ there exist $Q_{1}, \ldots, Q_{m} \in$ $R(T)$ such that

$$
\eta=\sum_{k=1}^{m} Q_{k} \iota_{p}^{*} c_{k}
$$

Then

$$
\sum_{k=1}^{m}\left(\beta_{k}(q)-\beta_{k}(p)-Q_{k}\left(1-e^{2 \pi \sqrt{-1} \alpha\left(e^{\prime}\right)}\right)\right) \iota_{p}^{*} c_{k}=0
$$

But $\iota_{p}^{*} c_{1}, \ldots, \iota_{p}^{*} c_{m}$ are linearly independent over $R(T)$, so

$$
\beta_{k}(q)-\beta_{k}(p)=Q_{k}\left(1-e^{2 \pi \sqrt{-1} \alpha\left(e^{\prime}\right)}\right)
$$

Since $\alpha\left(e^{\prime}\right)=\alpha\left(p^{\prime}, q^{\prime}\right)=\alpha_{B}(p, q)$, this implies that $\beta_{k} \in K_{\alpha_{B}}\left(\Gamma_{B}\right)$. Therefore every K-class on Γ can be written as a linear combination of classes c_{1}, \ldots, c_{m}, with coefficients in $K_{\alpha_{B}}\left(\Gamma_{B}\right)$.

6. Invariant classes

Let $\pi:(\Gamma, \alpha) \rightarrow\left(\Gamma_{B}, \alpha_{B}\right)$ be a GKM fiber bundle, and let $\left(\Gamma_{p}, \alpha_{p}\right)$ be one of its fibers. We say that $f \in K_{\alpha_{p}}\left(\Gamma_{p}\right)$ is an invariant class if $\Upsilon_{\gamma}^{*}(f)=f$ for every $\Upsilon_{\gamma} \in \operatorname{Hol}_{\pi}\left(\Gamma_{p}\right)$. We denote by $\left(K_{\alpha_{p}}\left(\Gamma_{p}\right)\right)^{\text {Hol }}$ the subring of $K_{\alpha_{p}}\left(\Gamma_{p}\right)$ given by invariant classes.

Given any such class $f \in\left(K_{\alpha_{p}}\left(\Gamma_{p}\right)\right)^{\mathrm{Hol}}$, we can extend it to be an element of Maps: $V \rightarrow R(T)$ by the following recipe: let q be a vertex of Γ_{B}, and γ a path in Γ_{B} from q to p. Let $\Upsilon_{\gamma}:\left(\Gamma_{q}, \alpha_{q}\right) \rightarrow\left(\Gamma_{p}, \alpha_{p}\right)$ be the isomorphism of GKM graphs associated to γ; then, as we observed before, $\Upsilon_{\gamma}^{*}(f)$ defines an element of $K_{\alpha_{q}}\left(\Gamma_{q}\right)$. Notice that the invariance of f implies that $\Upsilon_{\gamma}^{*}(f)$ only depends on the end-points of γ; so we denote $\Upsilon_{\gamma}^{*}(f)$ by f_{q}.

Proposition 6.1. Let $c \in \operatorname{Maps}(V, R(T))$ be the map defined by $c\left(q^{\prime}\right)=f_{\pi\left(q^{\prime}\right)}\left(q^{\prime}\right)$ for any $q^{\prime} \in V$. Then $c \in K_{\alpha}(\Gamma)$.

Proof. Since c is a class on each fiber, it is sufficient to check the compatibility condition (2.4) on horizontal edges; let $e=(p, q)$ be an edge of Γ_{B}, and let $e^{\prime}=$ $\left(p^{\prime}, q^{\prime}\right)$ be its lift at $p^{\prime} \in V$. If $c\left(p^{\prime}\right)=f_{p}\left(p^{\prime}\right)=\sum_{k} n_{k} e^{2 \pi \sqrt{-1} \alpha_{k}}$, where $\alpha_{k} \in \mathbb{Z}_{T}^{*} \cap \mathfrak{v}_{p}^{*}$ and $n_{k} \in \mathbb{Z}$ for all k, then
$c\left(p^{\prime}\right)-c\left(q^{\prime}\right)=f_{p}\left(p^{\prime}\right)-f_{q}\left(q^{\prime}\right)=f_{p}\left(p^{\prime}\right)-\Psi_{e}\left(f_{p}\left(p^{\prime}\right)\right)=\sum_{k} n_{k}\left(e^{2 \pi \sqrt{-1} \alpha_{k}}-e^{2 \pi \sqrt{-1} \Psi_{e}\left(\alpha_{k}\right)}\right)$.
By definition of GKM fiber bundle, $\Psi_{e}\left(\alpha_{k}\right)=\alpha_{k}+c\left(\alpha_{k}\right) \alpha_{B}(p, q)$ for every k, where $c\left(\alpha_{k}\right)$ is an integer and $\alpha_{B}(p, q)=\alpha\left(p^{\prime}, q^{\prime}\right)$. So $e^{2 \pi \sqrt{-1} \alpha_{k}}-e^{2 \pi \sqrt{-1} \Psi_{e}\left(\alpha_{k}\right)}=$ $e^{2 \pi \sqrt{-1} \alpha_{k}}\left(1-e^{2 \pi \sqrt{-1} c\left(\alpha_{k}\right) \alpha_{B}(p, q)}\right)$, and it's easy to see that $\left(1-e^{2 \pi \sqrt{-1} c\left(\alpha_{k}\right) \alpha_{B}(p, q)}\right)=$ $\beta_{k}\left(1-e^{2 \pi \sqrt{-1} \alpha_{B}(p, q)}\right)$ for some $\beta_{k} \in R(T)$, for every k.

7. Classes on projective spaces

Let $T=\left(S^{1}\right)^{n}$ be the compact torus of dimension n, with Lie algebra $\mathfrak{t}=\mathbb{R}^{n}$, and let $\left\{y_{1}, \ldots, y_{n}\right\}$ be the basis of $\mathfrak{t}^{*} \simeq \mathbb{R}^{n}$ dual to the canonical basis of \mathbb{R}^{n}. Let
$\left\{e_{1}, \ldots, e_{n}\right\}$ be the canonical basis of \mathbb{C}^{n}. The torus T acts componentwise on \mathbb{C}^{n} by

$$
\begin{equation*}
\left(t_{1}, \ldots, t_{n}\right) \cdot\left(z_{1}, \ldots, z_{n}\right)=\left(t_{1} z_{1}, \ldots, t_{n} z_{n}\right) \tag{7.1}
\end{equation*}
$$

This action induces a GKM action of T on $\mathbb{C} P^{n-1}$, and the GKM graph is $\Gamma=\mathcal{K}_{n}$, the complete graph on n vertices labelled by $[n]=\{1, \ldots, n\}$. The axial function α on the edge (i, j) is $y_{i}-y_{j}$, for every $i \neq j$. Let $\mathbb{S}=\mathbb{Z}\left[y_{1}, \ldots, y_{n}\right]$, (\mathbb{S}) the field of fractions of $\mathbb{S}, \mathcal{M}=\operatorname{Maps}([n], \mathbb{S})$, and

$$
H_{\alpha}(\Gamma)=\left\{f \in \mathcal{M} \mid f(j)-f(k) \in\left(y_{j}-y_{k}\right) \mathbb{S}, \text { for all } j \neq k\right\}
$$

Then $H_{\alpha}(\Gamma)$ is an \mathbb{S}-subalgebra of \mathcal{M}. Let $\int_{\Gamma}: \mathcal{M} \rightarrow(\mathbb{S})$ be the map

$$
\int_{\Gamma} f=\sum_{k=1}^{n} \frac{f(k)}{\prod_{j \neq k}\left(y_{k}-y_{j}\right)}
$$

Proposition 7.1. Let $f \in \mathcal{M}$. Then $f \in H_{\alpha}(\Gamma)$ if and only if $\int_{\Gamma} f \in \mathbb{S}$.
Proof. We have

$$
\int_{\Gamma} f=\sum_{k=1}^{n} \frac{f(k)}{\prod_{j \neq k}\left(y_{k}-y_{j}\right)}=\frac{P}{\prod_{j<k}\left(y_{j}-y_{k}\right)},
$$

where $P \in \mathbb{S}$. The factors in the denominator are distinct and relatively prime, hence $\int_{\Gamma} f \in \mathbb{S}$ if and only if all factors in the denominator divide P.

The factor $y_{j}-y_{k}$ comes from

$$
\begin{aligned}
\frac{f(k)}{\prod_{i \neq k}\left(y_{i}-y_{j}\right)}+ & \frac{f(j)}{\prod_{i \neq j}\left(y_{i}-y_{j}\right)}=\frac{f(j)-f(k)}{\left(y_{j}-y_{k}\right) \prod_{i \neq j, k}\left(y_{j}-y_{i}\right)}+ \\
& +\frac{f(k)\left(\prod_{i \neq k, k}\left(y_{k}-y_{i}\right)-\prod_{i \neq j, k}\left(y_{j}-y_{i}\right)\right)}{\left(y_{j}-y_{k}\right) \prod_{i \neq j, k}\left(y_{j}-y_{i}\right)\left(y_{k}-y_{i}\right)}
\end{aligned}
$$

But $y_{j}-y_{k}$ divides the numerator of the second fraction, hence $y_{j}-y_{k}$ divides P if and only if it divides $f(j)-f(k)$.

The permutation group S_{n} acts on \mathbb{S} by permuting variables, and that action induces an action on $H_{\alpha}(\Gamma)$ by

$$
(w \cdot f)(j)=w^{-1} \cdot f(w(j))
$$

We say that a class $f \in H_{\alpha}(\Gamma)$ is S_{n}-invariant if $w \cdot f=f$ for every $w \in S_{n}$, i.e.

$$
f(w(j))=w \cdot f(j) \quad \text { for every } w \in S_{n}
$$

The goal of this section is to construct bases of the \mathbb{S}-module $H_{\alpha}(\Gamma)$ consisting of S_{n}-invariant classes, and to give explicit formulas for the coordinates of a given class in those bases.

Let $\phi:[n] \rightarrow \mathbb{S}, \phi(j)=y_{j}$ for all $1 \leqslant j \leqslant n$. Then ϕ is an S_{n}-invariant class in $H_{\alpha}(\Gamma)$. For $1 \leqslant k \leqslant n$, let $f_{k}=\phi^{k-1}$. Then $f_{1}, f_{2}, \ldots, f_{n}$ are \mathbb{S}-linearly independent invariant classes.

For $0 \leqslant j \leqslant n$, let s_{j} be the $j^{t h}$ elementary symmetric polynomial in the variables y_{1}, \ldots, y_{n}. Then $s_{0}=1, s_{1}=y_{1}+\cdots+y_{n}, s_{2}=y_{1} y_{2}+y_{1} y_{3}+\cdots+y_{n-1} y_{n}, \ldots$, $s_{n}=y_{1} y_{2} \cdots y_{n}$. For $1 \leqslant k \leqslant n$, let

$$
g_{k}=f_{k}-s_{1} f_{k-1}+s_{2} f_{k-2}-\cdots+(-1)^{k-1} s_{k-1} f_{1} .
$$

Then $g_{1}, g_{2}, \ldots, g_{n}$ are invariant classes and the transition matrix from the f 's to the g 's is triangular with ones on the diagonal, hence it is invertible over \mathbb{S}. Therefore the classes g_{1}, \ldots, g_{n} are also \mathbb{S}-linearly independent.

Let $\langle.,\rangle:. H_{\alpha}(\Gamma) \times H_{\alpha}(\Gamma) \rightarrow \mathbb{S}$ be the pairing

$$
\langle f, g\rangle=\int_{\Gamma} f g
$$

Theorem 7.2. The sets of classes $\left\{f_{1}, \ldots, f_{n}\right\}$ and $\left\{g_{n}, \ldots, g_{1}\right\}$ are dual to each other:

$$
\left\langle f_{j}, g_{n-k+1}\right\rangle=\delta_{j k}
$$

for all $1 \leqslant j, k \leqslant n$.
Proof. We have $\int_{\Gamma} \phi^{k}=0$ for all $0 \leqslant k \leqslant n-2$ and $\int_{\Gamma} \phi^{n-1}=1$. Moreover

$$
\phi^{n}-s_{1} \phi^{n-1}+s_{2} \phi^{n-2}-\ldots+(-1)^{n} s_{n} \phi^{0}=0
$$

Let $1 \leqslant j, k \leqslant n$. Then

$$
f_{j} g_{n-k+1}=\phi^{j-1}\left(\phi^{n-k}-s_{1} \phi^{n-k-1}+\cdots+(-1)^{n-k} s_{n-k} \phi^{0}\right)
$$

If $j<k$, then

$$
f_{j} g_{n-k+1}=\text { a combination of powers of } \phi \text { at most } n-2,
$$

and then $\left\langle f_{j}, g_{n-k+1}\right\rangle=0$.
If $j=k$, then

$$
f_{k} g_{n-k+1}=\phi^{n-1}+\text { a combination of powers of } \phi \text { at most } n-2,
$$

hence $\left\langle f_{k}, g_{n-k+1}\right\rangle=\int_{\Gamma} \phi^{n-1}=1$.
If $j>k$, then

$$
\begin{aligned}
f_{j} g_{n-k+1} & =\phi^{j-k-1}\left(\phi^{n}-s_{1} \phi^{n-1}+\cdots+(-1)^{n-k} s_{n-k} \phi^{k}\right)= \\
& =-\phi^{j-k-1}\left((-1)^{n-k-1} s_{n-k+1} \phi^{k-1}+\ldots+(-1)^{n} s_{n} \phi^{0}\right)= \\
& =\text { a combination of powers of } \phi \text { at most } n-2,
\end{aligned}
$$

and then $\left\langle f_{j}, g_{n-k+1}\right\rangle=0$.
The following is an immediate consequence of this result.
Corollary 7.3. The sets $\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ and $\left\{g_{1}, g_{2}, \ldots, g_{n}\right\}$ are dual bases of the \mathbb{S}-module $H_{\alpha}(\Gamma)$, and both bases consist of invariant classes. Moreover, if $h \in H_{\alpha}(\Gamma)$ and

$$
h=a_{1} f_{1}+a_{2} f_{2}+\cdots+a_{n} f_{n}=b_{1} g_{1}+b_{2} g_{2} \cdots+b_{n} g_{n}
$$

then

$$
a_{k}=\left\langle g_{n-k+1}, h\right\rangle \quad \text { and } \quad b_{k}=\left\langle f_{n-k+1}, h\right\rangle
$$

The entire discussion above extends naturally to K-theory. Let $z_{j}=e^{2 \pi \sqrt{-1} y_{j}}$ for $j=1, \ldots, n$. If y_{1}, \ldots, y_{n} denote a basis of \mathbb{Z}_{T}^{*}, we have that

$$
R(T)=\mathbb{Z}\left[z_{1}, \ldots, z_{n}, z_{1}^{-1}, \ldots, z_{n}^{-1}\right]
$$

Let $\psi: \mathbb{S} \rightarrow R(T)$ be the injective ring morphism determined by $\psi\left(y_{j}\right)=z_{j}$, for $j=1, \ldots, n$. Its image is $\psi(\mathbb{S})=R_{+}(T)=\mathbb{Z}\left[z_{1}, \ldots, z_{n}\right]$. Let

$$
K_{\alpha}(\Gamma)=\left\{g:[n] \rightarrow R(T) \mid f(j)-f(k) \in\left(z_{j}-z_{k}\right) R(T), \text { for all } j \neq k\right\}
$$

Then

$$
\Phi: H_{\alpha}(\Gamma) \rightarrow K_{\alpha}(\Gamma) \quad, \quad \Phi(f)(j)=\psi(f(j))
$$

is an injective morphism of rings and

$$
\Phi(q f)=\psi(q) \Phi(f)
$$

for all $f \in H_{\alpha}(\Gamma)$ and $q \in \mathbb{S}$. The image of Φ is

$$
\operatorname{im} \Phi=\left\{g \in K_{\alpha}(\Gamma) \mid \operatorname{im}(g) \subset R_{+}(T)\right\}
$$

Let $\nu=\Phi(\phi)$; then $\nu:[n] \rightarrow R(T), \nu(j)=z_{j}$.
The symmetric group S_{n} acts on $R(T)$ by simultaneously permuting the variables z and z^{-1}, and that action induces an action on $K_{\alpha}(\Gamma)$. The K-class ν is invariant, and so are its powers.

Proposition 7.4. The invariant classes $\left\{1, \nu, \ldots, \nu^{n-1}\right\}$ form a basis of $K_{\alpha}(\Gamma)$ over $R(T)$.

Proof. A Vandermonde determinant argument shows that the classes are independent. If $g \in K_{\alpha}(\Gamma)$, then there exists an invertible element $u \in R(T)$ such that $u g \in \operatorname{im} \Phi$. Let $u g=\Phi(f)$, with $f \in H_{\alpha}(\Gamma)$. If

$$
f=a_{0} \phi^{0}+\cdots+a_{n-1} \phi^{n-1}
$$

then

$$
g=u^{-1} \psi\left(a_{0}\right) \nu^{0}+\cdots+u^{-1} \psi\left(a_{n-1}\right) \nu^{n-1}
$$

and therefore the classes also generate $K_{\alpha}(\Gamma)$.

8. Invariant bases on flag manifolds

In this section we use the same technique as above to produce a basis of invariant K-classes on the variety of complete flags in \mathbb{C}^{n+1}.

As in the previous section, let $T=\left(S^{1}\right)^{n+1}$ act componentwise on \mathbb{C}^{n+1} by

$$
\left(t_{1}, \ldots, t_{n+1}\right) \cdot\left(z_{1}, \ldots, z_{n+1}\right)=\left(t_{1} z_{1}, \ldots, t_{n+1} z_{n+1}\right)
$$

and let $x_{1}, \ldots, x_{n+1} \in \mathbb{Z}_{T}^{*}$ be the weights. This action induces a GKM action both on the flag manifold $F l\left(\mathbb{C}^{n+1}\right)$ and $\mathbb{C} P^{n}$.

The GKM graph (Γ, α) associated to $F l\left(\mathbb{C}^{n+1}\right)$ is the permutahedron: its vertices are in bijection with the elements of S_{n+1}, the group of permutations on $n+1$ elements, and there exists an edge e between two vertices σ and σ^{\prime} if and only if σ and σ^{\prime} differ by a transposition, i.e. $\sigma^{\prime}=\sigma(i, j)$, for some $1 \leqslant i<j \leqslant n+1$; the axial function is given by $\alpha\left(\sigma, \sigma^{\prime}\right)=x_{\sigma(i)}-x_{\sigma^{\prime}(i)}$.

The group S_{n+1} acts on the GKM graph by left multiplication on its vertices, and on \mathfrak{t}^{*} by

$$
\sigma \cdot x_{i}=x_{\sigma(i)}
$$

Using the identification (2.1), this action determines an action on $R(T)$ by defining

$$
\begin{equation*}
\sigma \cdot\left(e^{2 \pi \sqrt{-1} x_{i}}\right)=e^{2 \pi \sqrt{-1} x_{\sigma(i)}} \tag{8.1}
\end{equation*}
$$

and then extending it to the elements of $R(T)$ in the natural way. Using the fiber bundle construction introduced in this paper we will now produce a basis of the K-ring of (Γ, α) composed of S_{n+1}-invariant classes, i.e. elements $f \in K_{\alpha}(\Gamma)$ satisfying

$$
f(u)=u \cdot f(i d) \quad \text { for every } \quad u \in S_{n+1}
$$

The main idea in the construction of our invariant basis of K-classes for $F l\left(\mathbb{C}^{n+1}\right)$ is to use the natural projection π of $F l\left(\mathbb{C}^{n+1}\right)$ to $\mathbb{C} P^{n}$ with fiber $F l\left(\mathbb{C}^{n}\right)$ to construct these classes by an induction argument on n.

As we saw in section 7 the GKM graph $\left(\Gamma_{B}, \alpha_{B}\right)$ associated to $\mathbb{C} P^{n}$ is $\left(\mathcal{K}_{n+1}, \alpha_{B}\right)$, where $\alpha_{B}(i, j)=x_{i}-x_{j}$ for every $1 \leq i \neq j \leq n+1$. The projection $\pi: F l\left(\mathbb{C}^{n+1}\right) \rightarrow$ $\mathbb{C} P^{n}$ can be described in a simple way in terms of the vertices of the GKM graphs; in fact $\pi:(\Gamma, \alpha) \rightarrow\left(\Gamma_{B}, \alpha_{B}\right)$ is simply given by $\pi(\sigma)=\sigma(1)$, for every $\sigma \in S_{n+1}$.

Let z_{i} be $e^{2 \pi \sqrt{-1} x_{i}}$ for every $i=1, \ldots, n+1$ and $\nu:[n+1] \rightarrow R(T)$ be invariant the K-class given by $\nu(i)=z_{i}$ for $i=1, \ldots, n+1$. By Proposition 7.4 the classes $1, \nu, \ldots, \nu^{n}$ form an invariant basis of $K_{\alpha_{B}}\left(\mathcal{K}_{n+1}\right)$, and they lift to S_{n+1}-invariant basic classes on Γ.

Let Γ_{n+1} be the fiber over $\mathbb{C} \cdot e_{n+1}$, where $\left\{e_{1}, \ldots, e_{n+1}\right\}$ denotes the canonical basis of \mathbb{C}^{n+1}; the holonomy group on this fiber is isomorphic to S_{n} viewed as the subgroup of S_{n+1} which leaves the element $n+1$ fixed. Once we construct a basis of $K_{\alpha}\left(\Gamma_{n+1}\right)$ consisting of holonomy invariant classes, we can extend those to a set of classes of $K_{\alpha}(\Gamma)$, which, together with the invariant basic classes constructed above, will generate a basis of $K_{\alpha}(\Gamma)$ as a module over $R(T)$. We will show that if we start with a natural choice for the base of the induction, then the global classes generated by this means are indeed S_{n+1} invariant.

Letting $I=\left[i_{1}, \ldots, i_{n}\right]$ be a multi-index of non-negative integers, define

$$
\mathbf{z}^{I}=z_{1}^{i_{1}} z_{2}^{i_{2}} \cdots z_{n}^{i_{n}}
$$

and let $C_{I}=C_{T}\left(\mathbf{z}^{I}\right): S_{n+1} \rightarrow R(T)$ be the element defined by

$$
C_{I}(\sigma)=\sigma \cdot \mathbf{z}^{I} \quad \text { for every } \quad \sigma \in S_{n+1}
$$

it's easy to verify that C_{I} is an invariant class of $K_{\alpha}(\Gamma)$.
Theorem 8.1. Let

$$
\mathcal{A}_{n}=\left\{I=\left[i_{1}, \ldots, i_{n}\right] \mid 0 \leqslant i_{1} \leqslant n, 0 \leqslant i_{2} \leqslant n-1, \ldots, 0 \leqslant i_{n} \leqslant 1\right\}
$$

Then the set

$$
\left\{C_{I}=C_{T}\left(\mathbf{z}^{I}\right) \mid I \in \mathcal{A}_{n}\right\}
$$

is an invariant basis of $K_{\alpha}(\Gamma)$ as an $R(T)$-module.
Proof. As mentioned above, the proof is by induction. Let $n=2$, then the fiber bundle $\pi: F l\left(\mathbb{C}^{3}\right) \rightarrow \mathbb{C} P^{2}$ is a $\mathbb{C} P^{1}$-bundle. Let $p=\mathbb{C} \cdot e_{3} \in \mathbb{C} P^{2}$ be the one dimensional subspace generated by the third vector in the canonical basis of \mathbb{C}^{3}. Then the fiber over p is a copy of $\mathbb{C} P^{1}$ and the invariant classes $C_{[0]}$ and $C_{[1]}$ form a basis of the K-ring of the fiber. We can extend these classes using transition maps between fibers, thus obtaining S_{3}-invariant K-classes $C_{[0,0]}$ and $C_{[0,1]}$ on $\mathrm{Fl}\left(\mathbb{C}^{3}\right)$. By Proposition 7.4 the invariant classes $1, \nu, \nu^{2}$ form a basis of the K-ring of the base, and they lift to S_{3}-invariant basic classes $C_{[1,0]}$ and $C_{[2,0]}$. By Theorem 5.3 the K-ring of $F l\left(\mathbb{C}^{3}\right)$ is freely generated over $R(T)$ by the invariant classes $C_{[0,0]}$, $C_{[0,1]}, C_{[1,0]}, C_{[1,1]}, C_{[2,0]}$ and $C_{[2,1]}$.

The general statement follows by repeating inductively the same argument, since at each stage the fiber of $\pi: F l\left(\mathbb{C}^{m+1}\right) \rightarrow \mathbb{C} P^{m}$ is a copy of $F l\left(\mathbb{C}^{m}\right)$.

Remark 8.2. This argument can be adapted to give a basis of invariant K-classes for the generalized flag variety of type C_{n}. Let $\alpha_{i}=x_{i}-x_{i+1}$ for $i=1, \ldots, n-1$ and $\alpha_{n}=2 x_{n}$ be a choice of simple roots of type C_{n}. The corresponding Weyl group
W is the group of signed permutations of n elements. Let $\Sigma=\left\{\alpha_{2}, \ldots, \alpha_{n}\right\}$, then $G / P(\Sigma)$ is a GKM manifold diffeomorphic to a complex projective space $\mathbb{C} P^{2 n-1}$; its GKM graph is a complete graph $\mathcal{K}_{2 n}$ whose vertices can be identified with the set $\{ \pm 1, \ldots, \pm n\}$ and the axial function α is simply given by $\alpha(\pm i, \pm j)= \pm x_{i} \mp x_{j}$, for every edge $(\pm i, \pm j)$ of the GKM graph. Observe that the procedure in section 7 can be used here to produce a W-invariant basis of $K_{\alpha}\left(\mathcal{K}_{2 n}\right)$. In fact it is sufficient to let $y_{1}=x_{1}, \ldots, y_{n}=x_{n}, y_{n+1}=-x_{1}$ and $y_{2 n}=-x_{n}$; the basis of Proposition 7.4 is $S_{2 n}$-invariant, and hence in particular W-invariant.

Let G / B be the generic coadjoint orbit of type C_{n}, and (Γ, α) its GKM graph. If we consider the natural projection $G / B \rightarrow G / P(\Sigma)$, the fiber is diffeomorphic to a generic coadjoint orbit of type C_{n-1}. Hence we can repeat the inductive argument used in type A_{n} to produce a W-invariant basis of $K_{\alpha}(\Gamma)$.

9. The Kostant-Kumar Description

The manifolds in section 4 are also describable in terms of compact groups. Namely, if we let G_{0} be the compact form of G and K the maximal compact subgroup of P, then $M=G / P=G_{0} / K$. Moreover, $W=W_{G_{0}}$ and $W(\Sigma)=$ $W_{K}, W_{G_{0}}$ and W_{K} being the Weyl groups of G_{0} and K, so $M^{T}=W_{G_{0}} / W_{K}$. A fundamental theorem in equivariant K-theory is the Kostant-Kumar theorem, which asserts that $K_{T}(M)$ is isomorphic to the tensor product

$$
\begin{equation*}
R^{W_{K}} \otimes_{R^{W}} R \tag{9.1}
\end{equation*}
$$

where R is the character ring $R(T)$, and $R^{W_{K}}$ and R^{W} are the subrings of W_{K} and W-invariant elements in R. This description of $K_{T}(M)$ generalizes to K-theory the well-known Borel description of the equivariant cohomology ring $H_{T}(M)$ as the tensor product

$$
\begin{equation*}
\mathbb{S}\left(\mathfrak{t}^{*}\right)^{W_{K}} \otimes_{\mathbb{S}\left(\mathfrak{t}^{*}\right)^{W}} \mathbb{S}\left(\mathfrak{t}^{*}\right) \tag{9.2}
\end{equation*}
$$

and in GHZ the authors showed how to reconcile this description with the GKM description of $H_{T}(M)$. Mutatis mutandi, their arguments work as well in K-theory and we will give below a brief description of the K-theoretic version of their theorem.

Let Γ be the GKM graph of M. As we pointed out above, $M^{T}=W / W_{K}$, so the vertices of Γ are the elements of W / W_{K}. Now let $f \otimes g$ be a decomposable element of the tensor product (9.1). Then one gets an R-valued function, $k(f \otimes g)$, on W / W_{K} by setting

$$
\begin{equation*}
k(f \otimes g)\left(w W_{K}\right)=w f g \tag{9.3}
\end{equation*}
$$

One can show that this defines a ring morphism, k, of the ring (9.1) into the ring $\operatorname{Maps}\left(M^{T}, R\right)$, and in fact that this ring morphism is a bijection of the ring (9.1) onto $K_{\alpha}(\Gamma)$. (For the proof of the analogous assertions in cohomology see section 2.4 of GHZ.) Moreover the action of W on $K_{T}(M)$ becomes, under this isomorphism, the action

$$
\begin{equation*}
w\left(f_{1} \otimes f_{2}\right)=f_{1} \otimes w f_{2} \tag{9.4}
\end{equation*}
$$

of W on the ring (9.1), so the ring of W-invariant elements in $K_{T}(M)$ gets identified with the tensor product $R^{W_{K}} \otimes_{R^{W}} R^{W}$, which is just the ring $R^{W_{K}}$ itself. Finally we note that if M is the generalized flag variety, $G / B=G_{0} / T$, (9.1) becomes the tensor product

$$
\begin{equation*}
R \otimes_{R^{W}} R \tag{9.5}
\end{equation*}
$$

and the ring of W-invariant elements in $K_{T}(M)$ becomes R. Moreover, if π is the fibration $G_{0} / T \rightarrow G_{0} / K$, the fiber F over the identity coset of G_{0} / K is K / T; so
$K_{T}(F)$ is the tensor product $R \otimes_{R^{W_{K}}} R$, and the subring of W_{K}-invariant elements in $K_{T}(F)$ is R which, as we saw above, is also the ring of W_{G}-invariant elements in $K_{T}\left(G_{0} / T\right)$ which is also (see section 6) the ring of invariant elements associated with the fibration $G_{0} / T \rightarrow G_{0} / K$. Thus most of the features of our GKM description of the fibration $G_{0} / T \rightarrow G_{0} / K$ have simple interpretations in terms of this KostantKumar model.

References

[GHZ] Guillemin, Victor, Tara Holm, and Catalin Zara. A GKM description of the equivariant cohomology ring of a homogeneous space. J. Algebraic Combin. 23, no. 1, 21-41, 2006.
[GKM] Goresky, Mark, Robert Kottwitz, and Robert MacPherson. Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131, no. 1, 25-83, 1998.
[GSZ1] Victor Guillemin, Silvia Sabatini, Catalin Zara. Cohomology of GKM fiber bundles. J. Algebraic Combin. 35, no.1, 19-59, 2012.
[GSZ2] Victor Guillemin, Silvia Sabatini, Catalin Zara. Balanced fiber bundles and GKM theory. Preprint. arXiv:1110.4086v1[math.AT].
[GZ] Victor Guillemin, Catalin Zara. G-actions on graphs. International Mathematics Research Notes No. 10, 519-542, 2001.
[KK] Bertram Kostant, Shrawan Kumar. T-Equivariant K-Theory of Generalized Flag Varieties. Journal of Differential Geometry, 32, (1990), 549-603.
[R] Ioanid Rosu. Equivariant K-theory and equivariant cohomology. With an appendix by Allen Knutson and Ioanid Rosu. Math. Z. 243, no. 3, 423-448, 2003.

Department of Mathematics, MIT, Cambridge, MA 02139
E-mail address: vwg@math.mit.edu
Department of Mathematics, EPFL, Lausanne, Switzerland
E-mail address: silvia.sabatini@epfl.ch
Department of Mathematics, University of Massachusetts Boston, MA 02125
E-mail address: catalin.zara@umb.edu

[^0]: Date: January 31st, 2012.

