5,951 research outputs found

    Equivariant KK-theory of GKM bundles

    Get PDF
    Given a fiber bundle of GKM spaces, Ï€â€‰âŁ:M→B\pi\colon M\to B, we analyze the structure of the equivariant KK-ring of MM as a module over the equivariant KK-ring of BB by translating the fiber bundle, π\pi, into a fiber bundle of GKM graphs and constructing, by combinatorial techniques, a basis of this module consisting of KK-classes which are invariant under the natural holonomy action on the KK-ring of MM of the fundamental group of the GKM graph of BB. We also discuss the implications of this result for fiber bundles Ï€â€‰âŁ:M→B\pi\colon M\to B where MM and BB are generalized partial flag varieties and show how our GKM description of the equivariant KK-ring of a homogeneous GKM space is related to the Kostant-Kumar description of this ring.Comment: 15 page

    Coherent states and the quantization of 1+1-dimensional Yang-Mills theory

    Get PDF
    This paper discusses the canonical quantization of 1+1-dimensional Yang-Mills theory on a spacetime cylinder, from the point of view of coherent states, or equivalently, the Segal-Bargmann transform. Before gauge symmetry is imposed, the coherent states are simply ordinary coherent states labeled by points in an infinite-dimensional linear phase space. Gauge symmetry is imposed by projecting the original coherent states onto the gauge-invariant subspace, using a suitable regularization procedure. We obtain in this way a new family of "reduced" coherent states labeled by points in the reduced phase space, which in this case is simply the cotangent bundle of the structure group K. The main result explained here, obtained originally in a joint work of the author with B. Driver, is this: The reduced coherent states are precisely those associated to the generalized Segal-Bargmann transform for K, as introduced by the author from a different point of view. This result agrees with that of K. Wren, who uses a different method of implementing the gauge symmetry. The coherent states also provide a rigorous way of making sense out of the quantum Hamiltonian for the unreduced system. Various related issues are discussed, including the complex structure on the reduced phase space and the question of whether quantization commutes with reduction

    Non-commutative integrable systems on bb-symplectic manifolds

    Get PDF
    In this paper we study non-commutative integrable systems on bb-Poisson manifolds. One important source of examples (and motivation) of such systems comes from considering non-commutative systems on manifolds with boundary having the right asymptotics on the boundary. In this paper we describe this and other examples and we prove an action-angle theorem for non-commutative integrable systems on a bb-symplectic manifold in a neighbourhood of a Liouville torus inside the critical set of the Poisson structure associated to the bb-symplectic structure

    Superintegrable Hamiltonian systems with noncompact invariant submanifolds. Kepler system

    Full text link
    The Mishchenko-Fomenko theorem on superintegrable Hamiltonian systems is generalized to superintegrable Hamiltonian systems with noncompact invariant submanifolds. It is formulated in the case of globally superintegrable Hamiltonian systems which admit global generalized action-angle coordinates. The well known Kepler system falls into two different globally superintegrable systems with compact and noncompact invariant submanifolds.Comment: 23 page

    From twistors to twisted geometries

    Full text link
    In a previous paper we showed that the phase space of loop quantum gravity on a fixed graph can be parametrized in terms of twisted geometries, quantities describing the intrinsic and extrinsic discrete geometry of a cellular decomposition dual to the graph. Here we unravel the origin of the phase space from a geometric interpretation of twistors.Comment: 9 page

    Network Synthesis

    Get PDF
    Contains research objectives and reports on three research objectives

    Manifolds associated with (Z2)n(Z_2)^n-colored regular graphs

    Full text link
    In this article we describe a canonical way to expand a certain kind of (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graphs into closed nn-manifolds by adding cells determined by the edge-colorings inductively. We show that every closed combinatorial nn-manifold can be obtained in this way. When n≀3n\leq 3, we give simple equivalent conditions for a colored graph to admit an expansion. In addition, we show that if a (Z2)n+1(\mathbb Z_2)^{n+1}-colored regular graph admits an nn-skeletal expansion, then it is realizable as the moment graph of an (n+1)(n+1)-dimensional closed (Z2)n+1(\mathbb Z_2)^{n+1}-manifold.Comment: 20 pages with 9 figures, in AMS-LaTex, v4 added a new section on reconstructing a space with a (Z2)n(Z_2)^n-action for which its moment graph is a given colored grap
    • 

    corecore