15 research outputs found

    Geographic origin of migratory birds based on stable isotope analysis: the case of the greylag goose (Anser anser) wintering in Camargue, southern France

    Get PDF
    International audienceProper delineation of flyways is a prerequisite for adequate management of migratory birds. The implementation of coordinated international management for greylag goose (Anser anser) is currently underway in Europe for the north-west/south-west (NW/ SW) population. Some uncertainty remained as to whether greylags wintering in Camargue, Southern France, belonged to this population and bred in Norway, Sweden and Finland,or rather originated from the Central European population, especially since most neck collar observations were of birds ringed in the Czech Republic. Stable hydrogen isotope (δ 2 H) analyses of feathers from 147 individuals hunted or trapped during winter in Camargue provide some insight into this question and suggest north-central Europe as a more likely area of origin. This indicates that greylags wintering along the Mediterranean coast maybe largely separate from the birds of the NW/SW European population breeding in Fennoscandia, although some individuals may also come from the Polish or German regions of the NW/SW flyway, since the combined ringing and stable isotope analyses suggest these birds are mostly breeding and moulting in an isotopic area consistent with the Czech Republic, Poland and northern Germany. Earlier studies show birds wintering in other French regions rather originate from Sweden and Norway. These results should be considered for the management plan currently being developed for greylag goose in Europe. More generally, they question whether birds from two distinct populations /flyways should be applied similar or potentially different management plans within a given country

    Sustainable management of migratory European ducks : finding model species

    Get PDF
    Eurasian migratory duck species represent a natural resource shared between European countries. As is evident throughout human harvest history, lack of coordinated management and monitoring at appropriate levels often leads to 'the tragedy of the commons', where shared populations suffer overexploitation. Effective management can also be hampered by poor understanding of the factors that limit and regulate migratory populations throughout their flyways, and over time. Following decades of population increase, some European duck populations now show signs of levelling off or even decline, underlining the need for more active and effective management. In Europe, the existing mechanisms for delivering effective management of duck populations are limited, despite the need and enthusiasm for establishing adaptive management (AM) schemes for wildlife populations. Existing international legal agreements already oblige European countries to sustainably manage migratory waterbirds. Although the lack of coordinated demographic and hunting data remains a challenge to sustainable management planning, AM provides a robust decision-making framework even in the presence of uncertainty regarding demographic and other information. In this paper we investigate the research and monitoring needs in Europe to successfully apply AM to ducks, and search for possible model species, focusing on freshwater species (in contrast to sea duck species) in the East Atlantic flyway. Based on current knowledge, we suggest that common teal Anas crecca, Eurasian wigeon Mareca penelope and common goldeneye Bucephala clangula represent the best species for testing the application of an AM muddling approach to duck populations in Europe. Applying AM to huntable species with relatively good population data as models for broader implementation represents a cost effective way of starting to develop AM on a European flyway scale for ducks, and potentially other waterbirds in the future.Peer reviewe

    Effects of climate change on European ducks : what do we know and what do we need to know?

    No full text
    The consequences of climate change for bird populations have received much attention in recent decades, especially amongst cavity-nesting songbirds, yet little has been written on ducks (Anatidae) despite these being major elements of wetland diversity and important quarry species. This paper reviews the major known consequences of climate change for birds in general, and relates these to the limited information available specifically for ducks. Climate change can influence migration distance and phenology, potentially affecting patterns of mortality, as well as distribution and reproductive success in ducks. Studies addressing effects of climate change are, however, restricted to very few duck species, including mallardAnas platyrhynchos and common eider Somateria mollissima. Shifts in winter duck distributions have been observed, whereas the mismatch hypothesis (mistiming between the periods of peak energy requirements for young and the peak of seasonal food availability) has received limited support with regard to ducks. We propose a range of monitoring initiatives, including population surveys, breeding success monitoring schemes and individual duck marking, which should later be integrated through population modelling and adaptive management to fill these gaps
    corecore