63 research outputs found

    Differential effects of glucagon-like peptide-1 receptor agonists on heart rate

    Get PDF
    Abstract While glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are known to increase heart rate (HR), it is insufficiently recognized that the extent varies greatly between the various agonists and is affected by the assessment methods employed. Here we review published data from 24-h time-averaged HR monitoring in healthy individuals and subjects with type 2 diabetes mellitus (T2DM) treated with either short-acting GLP-1 RAs, lixisenatide or exenatide, or long-acting GLP-1 RAs, exenatide LAR, liraglutide, albiglutide, or dulaglutide (N\ua0=\ua01112; active-treatment arms). HR effects observed in two independent head-to-head trials of lixisenatide and liraglutide (N\ua0=\ua0202; active-treatment arms) are also reviewed. Short-acting GLP-1 RAs, exenatide and lixisenatide, are associated with a transient (1\u201312\ua0h) mean placebo- and baseline-adjusted 24-h HR increase of 1\u20133\ua0beats per minute (bpm). Conversely, long-acting GLP-1 RAs are associated with more pronounced increases in mean 24-h HR; the highest seen with liraglutide and albiglutide at 6\u201310\ua0bpm compared with dulaglutide and exenatide LAR at 3\u20134\ua0bpm. For both liraglutide and dulaglutide, HR increases were recorded during both the day and at night. In two head-to-head comparisons, a small, transient mean increase in HR from baseline was observed with lixisenatide; liraglutide induced a substantially greater increase that remained significantly elevated over 24\ua0h. The underlying mechanism for increased HR remains to be elucidated; however, it could be related to a direct effect at the sinus node and/or stimulation of the sympathetic nervous system, with this effect related to the duration of action of the respective GLP-1 RAs. In conclusion, this review indicates that the effects on HR differ within the class of GLP-1 RAs: short-acting GLP-1 RAs are associated with a modest and transient HR increase before returning to baseline levels, while some long-acting GLP-1 RAs are associated with a more pronounced and sustained increase during the day and night. Findings from recently completed trials indicate that a GLP-1 RA-induced increase in HR, regardless of magnitude, does not present an increased cardiovascular risk for subjects with T2DM, although a pronounced increase in HR may be associated with adverse clinical outcomes in those with advanced heart failure

    Performance of the ATLAS electromagnetic calorimeter end-cap module 0

    Get PDF
    The construction and beam test results of the ATLAS electromagnetic end-cap calorimeter pre-production module 0 are presented. The stochastic term of the energy resolution is between 10% GeV^1/2 and 12.5% GeV^1/2 over the full pseudorapidity range. Position and angular resolutions are found to be in agreement with simulation. A global constant term of 0.6% is obtained in the pseudorapidity range 2.5 eta 3.2 (inner wheel)

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Cognitive changes under memantine according to vitamin D status in Alzheimer patients : an exposed/unexposed cohort pilot study

    No full text
    International audienceMemantine is a symptomatic treatment that partially prevents cognitive decline in Alzheimer disease (AD). The neuroprotective effects of memantine and vitamin D may potentiate each other, with benefits for cognition. The objective of this exposed/unexposed pilot study was to determine the cognitive changes among AD patients using memantine according to the presence or absence of vitamin D deficiency (VDD). Fifty-eight AD patients followed in a memory clinic during 6 months between 2009 and 2014 (mean ± standard deviation, 82.9 ± 5.0years; 56.9%female) were separated into four groups according to VDD (i.e., serum 25-hydroxyvitamin D ≤ 25 nM) at M0 and M6 (i.e., Group 1: no VDD-M0, no VDD-M6; Group 2: VDD-M0, no VDD-M6; Group 3: no VDD-M0, VDD-M6; Group 4: VDD-M0, VDD-M6). The 6-month cognitive change was examined with the Mini-Mental State Examination (MMSE) score in the 4 groups according to the use of memantine. Age, gender, body mass index, IADL score, GDS score, and use of pchychoactive drugs were measured at baseline. We found that participants using memantine had a lower MMSE score at M0 compared to those without memantine (P = 0.006). After 6 months of follow-up, there was a memantine-related improvement of the MMSE score only in the participants with VDD-M6. This was significant in Group 3 with no VDD-M0 (P = 0.039), but not in Group 4 who already had VDD-M0. Similarly, using memantine was associated with a 6-month improvement of MMSE only in Group 3 in whom VDD appeared during the follow-up (β = 8.8, P = 0.044). In conclusion, the use of memantine was associated with improved cognitive performance after 6 months of treatment in the presence of VDD at M6. Memantine may prevent the cognitive decline that accompanies the onset of VDD, which prompts to give to AD patients a regimen combining both memantine and vitamin D supplements

    Advances in gastropod immunity from the study of the interaction between the snail Biomphalaria glabrata and its parasites: A review of research progress over the last decade

    No full text
    This review summarizes the research progress made over the past decade in the field of gastropod immunity resulting from investigations of the interaction between the snail Biomphalaria glabrata and its trematode parasites. A combination of integrated approaches, including cellular, genetic and comparative molecular and proteomic approaches have revealed novel molecular components involved in mediating Biomphalaria immune responses that provide insights into the nature of host-parasite compatibility and the mechanisms involved in parasite recognition and killing. The current overview emphasizes that the interaction between B. glabrata and its trematode parasites involves a complex molecular crosstalk between numerous antigens, immune receptors, effectors and anti-effector systems that are highly diverse structurally and extremely variable in expression between and within host and parasite populations. Ultimately, integration of these molecular signals will determine the outcome of a specific interaction between a B. glabrata individual and its interacting trematodes. Understanding these complex molecular interactions and identifying key factors that may be targeted to impairment of schistosome development in the snail host is crucial to generating new alternative schistosomiasis control strategies
    corecore