275 research outputs found

    All optical cooling of 39^{39}K to Bose Einstein condensation

    Full text link
    We report the all-optical production of Bose Einstein condensates (BEC) of 39^{39}K atoms. We directly load 3×1073 \times 10^{7} atoms in a large volume optical dipole trap from gray molasses on the D1 transition. We then apply a small magnetic quadrupole field to polarize the sample before transferring the atoms in a tightly confining optical trap. Evaporative cooling is finally performed close to a Feshbach resonance to enhance the scattering length. Our setup allows to cross the BEC threshold with 3×1053 \times 10^5 atoms every 7s. As an illustration of the interest of the tunability of the interactions we study the expansion of Bose-Einstein condensates in the 1D to 3D crossover

    Effect of disorder close to the superfluid transition in a two-dimensional Bose gas

    Full text link
    We experimentally study the effect of disorder on trapped quasi two-dimensional (2D) 87Rb clouds in the vicinity of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. The disorder correlation length is of the order of the Bose gas characteristic length scales (thermal de Broglie wavelength, healing length) and disorder thus modifies the physics at a microscopic level. We analyze the coherence properties of the cloud through measurements of the momentum distributions, for two disorder strengths, as a function of its degeneracy. For moderate disorder, the emergence of coherence remains steep but is shifted to a lower entropy. In contrast, for strong disorder, the growth of coherence is hindered. Our study is an experimental realization of the dirty boson problem in a well controlled atomic system suitable for quantitative analysis

    Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases

    Get PDF
    The Pauli exclusion principle is one of the most fundamental manifestations of quantum statistics. Here, we report on its local observation in a spin-polarized degenerate gas of fermions in an optical lattice. We probe the gas with single-site resolution using a new generation quantum gas microscope avoiding the common problem of light induced losses. In the band insulating regime, we measure a strong local suppression of particle number fluctuations and a low local entropy per atom. Our work opens a new avenue for studying quantum correlations in fermionic quantum matter both in and out of equilibrium.Comment: 8 pages, 6 figure

    Imaging magnetic polarons in the doped Fermi-Hubbard model

    Get PDF
    Polarons are among the most fundamental quasiparticles emerging in interacting many-body systems, forming already at the level of a single mobile dopant. In the context of the two-dimensional Fermi-Hubbard model, such polarons are predicted to form around charged dopants in an antiferromagnetic background in the low doping regime close to the Mott insulating state. Macroscopic transport and spectroscopy measurements related to high TcT_{c} materials have yielded strong evidence for the existence of such quasiparticles in these systems. Here we report the first microscopic observation of magnetic polarons in a doped Fermi-Hubbard system, harnessing the full single-site spin and density resolution of our ultracold-atom quantum simulator. We reveal the dressing of mobile doublons by a local reduction and even sign reversal of magnetic correlations, originating from the competition between kinetic and magnetic energy in the system. The experimentally observed polaron signatures are found to be consistent with an effective string model at finite temperature. We demonstrate that delocalization of the doublon is a necessary condition for polaron formation by contrasting this mobile setting to a scenario where the doublon is pinned to a lattice site. Our work paves the way towards probing interactions between polarons, which may lead to stripe formation, as well as microscopically exploring the fate of polarons in the pseudogap and bad metal phase

    Continuous Activation of Autoreactive CD4+ CD25+ Regulatory T Cells in the Steady State

    Get PDF
    Despite a growing interest in CD4+ CD25+ regulatory T cells (Treg) that play a major role in self-tolerance and immunoregulation, fundamental parameters of the biology and homeostasis of these cells are poorly known. Here, we show that this population is composed of two Treg subsets that have distinct phenotypes and homeostasis in normal unmanipulated mice. In the steady state, some Treg remain quiescent and have a long lifespan, in the order of months, whereas the other Treg are dividing extensively and express multiple activation markers. After adoptive transfer, tissue-specific Treg rapidly divide and expand preferentially in lymph nodes draining their target self-antigens. These results reveal the existence of a cycling Treg subset composed of autoreactive Treg that are continuously activated by tissue self-antigens

    Impact of post-procedural glycemic variability on cardiovascular morbidity and mortality after transcatheter aortic valve implantation : a post hoc cohort analysis

    Get PDF
    International audienceBackground : Glycemic variability is associated with worse outcomes after cardiac surgery, but the prognosis value of early glycemic variability after transcatheter aortic valve implantation is not known. This study was therefore designed to analyze the prognosis significance of post-procedural glycemic variability within 30 days after transcatheter aortic valve implantation.Methods : A post hoc analysis of patients from our center included in the FRANCE and FRANCE-2 registries was conducted. Post-procedural glycemic variability was assessed by calculating the mean daily δ blood glucose during the first 2 days after transcatheter aortic valve implantation. Major complications within 30 days were death, stroke, myocardial infarction, acute heart failure, and life-threatening cardiac arrhythmias.Results : We analyzed 160 patients (age (median [interquartile] = 84 [80–88] years; diabetes mellitus (n) = 41 (26%) patients; logistic Euroscore = 20 [12–32]). The median value of mean daily δ blood glucose was 4.3 mmol l−1. The rate of major complications within 30 days after procedure among patients with the lowest quartile of glycemic variability was 12%, increasing from 12 to 26%, and 39% in the second, third, and fourth quartiles, respectively. In multivariate analysis, glycemic variability was independently associated with an increased risk of major complications within 30 days after the procedure (odds ratio [95% CI] = 1.83 [1.19–2.83]; p = 0.006).Conclusions : This study showed that post-procedural glycemic variability was associated with an increased risk of major complications within 30 days after transcatheter aortic valve implantation

    Microscopic evolution of doped Mott insulators from polaronic metal to Fermi liquid

    Get PDF
    The competition between antiferromagnetism and hole motion in two-dimensional Mott insulators lies at the heart of a doping-dependent transition from an anomalous metal to a conventional Fermi liquid. Condensed matter experiments suggest charge carriers change their nature within this crossover, but a complete understanding remains elusive. We observe such a crossover in Fermi-Hubbard systems on a cold-atom quantum simulator and reveal the transformation of multi-point correlations between spins and holes upon increasing doping at temperatures around the superexchange energy. Conventional observables, such as spin susceptibility, are furthermore computed from the microscopic snapshots of the system. Starting from a magnetic polaron regime, we find the system evolves into a Fermi liquid featuring incommensurate magnetic fluctuations and fundamentally altered correlations. The crossover is completed for hole dopings around 30%30\%. Our work benchmarks theoretical approaches and discusses possible connections to lower temperature phenomena

    Robust Bilayer Charge-Pumping for Spin- and Density-Resolved Quantum Gas Microscopy

    Get PDF
    Quantum gas microscopy has emerged as a powerful new way to probe quantum many-body systems at the microscopic level. However, layered or efficient spin-resolved readout methods have remained scarce as they impose strong demands on the specific atomic species and constrain the simulated lattice geometry and size. Here we present a novel high-fidelity bilayer readout, which can be used for full spin- and density-resolved quantum gas microscopy of two-dimensional systems with arbitrary geometry. Our technique makes use of an initial Stern-Gerlach splitting into adjacent layers of a highly-stable vertical superlattice and subsequent charge pumping to separate the layers by 21 μ21\,\mum. This separation enables independent high-resolution images of each layer. We benchmark our method by spin- and density-resolving two-dimensional Fermi-Hubbard systems. Our technique furthermore enables the access to advanced entropy engineering schemes, spectroscopic methods or the realization of tunable bilayer systems

    Deregulation and Targeting of TP53 Pathway in Multiple Myeloma

    Get PDF
    Multiple Myeloma (MM) is an incurable disease characterized by a clonal evolution across the course of the diseases and multiple lines of treatment. Among genomic drivers of the disease, alterations of the tumor suppressor TP53 are associated with poor outcomes. In physiological situation, once activated by oncogenic stress or DNA damage, p53 induces either cell-cycle arrest or apoptosis depending on the cellular context. Its inactivation participates to drug resistance in MM. The frequency of TP53 alterations increases along with the progression of the disease, from 5 at diagnosis to 75% at late relapses. Multiple mechanisms of regulation lead to decreased expression of p53, such as deletion 17p, TP53 mutations, specific microRNAs overexpression, TP53 promoter methylations, and MDM2 overexpression. Several therapeutic approaches aim to target the p53 pathway, either by blocking its interaction with MDM2 or by restoring the function of the altered protein. In this review, we describe the mechanism of deregulation of TP53 in MM, its role in MM progression, and the therapeutic options to interact with the TP53 pathway
    • …
    corecore