67 research outputs found

    Linear B-cell epitopes in the spike and nucleocapsid proteins as markers of SARS-CoV-2 exposure and disease severity

    Get PDF
    BACKGROUND Given the unceasing worldwide surge in COVID-19 cases, there is an imperative need to develop highly specific and sensitive serology assays to define exposure to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). METHODS Pooled plasma samples from PCR positive COVID-19 patients were used to identify linear B-cell epitopes from a SARS-CoV-2 peptide library of spike (S), envelope (E), membrane (M), and nucleocapsid (N) structural proteins by peptide-based ELISA. Hit epitopes were further validated with 79 COVID-19 patients with different disease severity status, 13 seasonal human CoV, 20 recovered SARS patients and 22 healthy donors. FINDINGS Four immunodominant epitopes, S14P5, S20P2, S21P2 and N4P5, were identified on the S and N viral proteins. IgG responses to all identified epitopes displayed a strong detection profile, with N4P5 achieving the highest level of specificity (100%) and sensitivity (>96%) against SARS-CoV-2. Furthermore, the magnitude of IgG responses to S14P5, S21P2 and N4P5 were strongly associated with disease severity. INTERPRETATION IgG responses to the peptide epitopes can serve as useful indicators for the degree of immunopathology in COVID-19 patients, and function as higly specific and sensitive sero-immunosurveillance tools for recent or past SARS-CoV-2 infections. The flexibility of these epitopes to be used alone or in combination will allow for the development of improved point-of-care-tests (POCTs)

    Whole blood immunophenotyping uncovers immature neutrophil-to-VD2 T-cell ratio as an early marker for severe COVID-19

    Get PDF
    COVID-19 severity is associated with cytokine levels and lymphopenia, but the role of immune cell subsets is not well understood. Here the authors immunophenotype whole blood samples from 54 COVID-19 patients and find that the immature neutrophil-to-VD2 T-cell ratio is associated with severe COVID-19

    Identification and Characterization of Two Novel RNA Viruses from Anopheles gambiae Species Complex Mosquitoes

    Get PDF
    Mosquitoes of the Anopheles gambiae complex display strong preference for human blood-meals and are major malaria vectors in Africa. However, their interaction with viruses or role in arbovirus transmission during epidemics has been little examined, with the exception of O'nyong-nyong virus, closely related to Chikungunya virus. Deep-sequencing has revealed different RNA viruses in natural insect viromes, but none have been previously described in the Anopheles gambiae species complex. Here, we describe two novel insect RNA viruses, a Dicistrovirus and a Cypovirus, found in laboratory colonies of An. gambiae taxa using small-RNA deep sequencing. Sequence analysis was done with Metavisitor, an open-source bioinformatic pipeline for virus discovery and de novo genome assembly. Wild-collected Anopheles from Senegal and Cambodia were positive for the Dicistrovirus and Cypovirus, displaying high sequence identity to the laboratory-derived virus. Thus, the Dicistrovirus (Anopheles C virus, AnCV) and Cypovirus (Anopheles Cypovirus, AnCPV) are components of the natural virome of at least some anopheline species. Their possible influence on mosquito immunity or transmission of other pathogens is unknown. These natural viruses could be developed as models for the study of Anopheles-RNA virus interactions in low security laboratory settings, in an analogous manner to the use of rodent malaria parasites for studies of mosquito anti-parasite immunity

    Data-Driven Analysis of COVID-19 Reveals Persistent Immune Abnormalities in Convalescent Severe Individuals

    Get PDF
    Severe SARS-CoV-2 infection can trigger uncontrolled innate and adaptive immune responses, which are commonly associated with lymphopenia and increased neutrophil counts. However, whether the immune abnormalities observed in mild to severely infected patients persist into convalescence remains unclear. Herein, comparisons were drawn between the immune responses of COVID-19 infected and convalescent adults. Strikingly, survivors of severe COVID-19 had decreased proportions of NKT and Vδ2 T cells, and increased proportions of low-density neutrophils, IgA+/CD86+/CD123+ non-classical monocytes and hyperactivated HLADR+CD38+ CD8+ T cells, and elevated levels of pro-inflammatory cytokines such as hepatocyte growth factor and vascular endothelial growth factor A, long after virus clearance. Our study suggests potential immune correlates of “long COVID-19”, and defines key cells and cytokines that delineate true and quasi-convalescent states

    Characterization and role of Anopheles gambiae antiviral pathways in Arbovirus and parasite infections

    No full text
    Dans une ère où les moustiques modifiés commencent à être utilisés ou envisagés pour contrôler les épidémies de Dengue ou malaria, le manque de connaissance sur l’immunité des insectes vecteurs envers certains pathogènes se fait cruellement ressentir. Pourtant la possibilité de changements de vecteurs, dû à un changement de leur immunité, provoquée par l’Homme est réelle. Pour déterminer la contribution de l’immunité dans différents compartiments du vecteur contre divers pathogènes avons étudié la réponse antivirale dans la première barrière de transmission chez le moustique vecteur de la malaria après une infection par un repas sanguin. Nous montrons que les réponses antivirales sont différentes entre compartiments, et proposons un modèle où des interactions tripartites entre le virus, l’immunité du moustique et la flore entérique interagissent pour contrôler l’infection précoce du moustique après le repas sanguin. De façon surprenante, nous avons également montré que la voie de l’ARN interférence n’a pas d’effet antiviral dans ce compartiment. Nous suggérons que cette voie est utilisée par le parasite Plasmodium pour détourner la réponse antiparasitaire médiée par Toll, grâce à un facteur de virulence de nature ARN double brin. Nous avons également montré que des biais expérimentaux lors de l’infection des insectes ont conduit à l’élaboration d’un dogme disant que la voie de l’ARN interférence est la voie antivirale principale des insectes, mais nos resultats suggèrent que malgré l’importance de cette voie pour controler l’intensité de la réplication virale lors de l’infection disséminée, cette voie n’a aucune fonction antivirale lors de l’infection initiale du tube digestif. Néanmoins, le séquençage des produits de cette voie permet d’assembler de-novo des génomes de virus commensaux. Les résultats de ces travaux montrent très clairement qu’il faut évaluer le rôle et l’impact de toute modification d’insectes vecteurs pour plusieurs classes de pathogènes. Cela ouvre également de nombreux nouveaux champs de recherches et pose de nombreuses nouvelles questions.In an era where modified mosquitoes are starting to be used in nature for controlling malaria and Dengue, lack of knowledge about immunity of mosquito vectors to some pathogen classes are becoming more evident. The risks for human-provoked vector shifts of pathogens transmission have not been examined. To fill these gaps, we assessed the antiviral immunity of the malaria vector, Anopheles gambiae, in the strongest mosquito bottleneck for pathogens, the midgut infection barrier after an infective bloodmeal. This work shows that the antiviral responses are different and highly compartmentalized between the midgut and systemic immunity. We propose a model where tripartite interactions between virus, mosquito immunity and enteric flora control early arboviral infection in the midgut. Surprisingly, we showed that while the siRNA pathway had no evident anti-arbovirus activity in the midgut, it was used by Plasmodium to evade mosquito immunity. A virus-like elicitor of double strand RNA nature is transferred from the parasite at the ookinete stage to the mosquito midgut cells, resulting in a shift of immune balance from anti-parasite response to an antiviral-like response. Importantly, our work shows that biases in experimental infection methods led to the misconstruction of a dogma stating that siRNA is the main antiviral pathways in insects, at least in the midgut compartment. And that the use of the pathway products can be successfully used to de-novo assemble previously unknown viruses from the virome. This work indicates that immune modifications in vectors need to be evaluated for changes of vectorial competence to different pathogens. It also opens numerous avenues of research and raises a lot of interesting questions that will need to be investigated in the future

    A promiscuous interaction of SARS-CoV-2 with bacterial products

    No full text

    Highly focused transcriptional response of Anopheles coluzzii to O’nyong nyong arbovirus during the primary midgut infection

    No full text
    International audienceBackground: Anopheles mosquitoes are efficient vectors of human malaria, but it is unknown why they do not transmit viruses as well as Aedes and Culex mosquitoes. The only arbovirus known to be consistently transmitted by Anopheles mosquitoes is O'nyong nyong virus (ONNV, genus Alphavirus, family Togaviridae). The interaction of Anopheles mosquitoes with RNA viruses has been relatively unexamined. Results: We transcriptionally profiled the African malaria vector, Anopheles coluzzii, infected with ONNV. Mosquitoes were fed on an infectious bloodmeal and were analyzed by Illumina RNAseq at 3 days post-bloodmeal during the primary virus infection of the midgut epithelium, before systemic dissemination. Virus infection triggers transcriptional regulation of just 30 host candidate genes. Most of the regulated candidate genes are novel, without known function. Of the known genes, a significant cluster includes candidates with predicted involvement in carbohydrate metabolism. Two candidate genes encoding leucine-rich repeat immune (LRIM) factors point to possible involvement of immune protein complexes in the mosquito antiviral response. The primary ONNV infection by bloodmeal shares little transcriptional response in common with ONNV infection by intrathoracic injection, nor with midgut infection by the malaria parasites, Plasmodium falciparum or P. berghei. Profiling of A. coluzzii microRNA (miRNA) identified 118 known miRNAs and 182 potential novel miRNA candidates, with just one miRNA regulated by ONNV infection. This miRNA was not regulated by other previously reported treatments, and may be virus specific. Coexpression analysis of miRNA abundance and messenger RNA expression revealed discrete clusters of genes regulated by Imd and JAK/STAT, immune signaling pathways that are protective against ONNV in the primary infection

    Metavisitor, a Suite of Galaxy Tools for Simple and Rapid Detection and Discovery of Viruses in Deep Sequence Data

    No full text
    International audienceMetavisitor is a software package that allows biologists and clinicians without specialized bioinformatics expertise to detect and assemble viral genomes from deep sequence data-sets. The package is composed of a set of modular bioinformatic tools and workflows that are implemented in the Galaxy framework. Using the graphical Galaxy workflow editor, users with minimal computational skills can use existing Metavisitor workflows or adapt them to suit specific needs by adding or modifying analysis modules. Metavisitor works with DNA, RNA or small RNA sequencing data over a range of read lengths and can use a combination of de novo and guided approaches to assemble genomes from sequencing reads. We show that the software has the potential for quick diagnosis as well as discovery of viruses from a vast array of organisms. Importantly, we provide here executable Metavisitor use cases, which increase the accessibility and transparency of the software, ultimately enabling biologists or clinicians to focus on biological or medical questions
    corecore