9 research outputs found

    Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments

    Get PDF
    There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39

    Neutron-induced cross sections via the surrogate method

    No full text
    Les sections efficaces neutroniques des noyaux de courte durĂ©e de vie sont des donnĂ©es cruciales pour la physique fondamentale et appliquĂ©e dans des domaines tels que la physique des rĂ©acteurs ou l'astrophysique nuclĂ©aire. En gĂ©nĂ©ral, l'extrĂȘme radioactivitĂ© de ces noyaux ne nous permet pas de procĂ©der Ă  des mesures induites par neutrons. Cependant, il existe une mĂ©thode de substitution (" surrogate " dans la littĂ©rature) qui permet de dĂ©terminer ces sections efficaces neutroniques par l'intermĂ©diaire de rĂ©actions de transfert ou de rĂ©actions de diffusion inĂ©lastique. Son intĂ©rĂȘt principal est de pouvoir utiliser des cibles moins radioactives et ainsi d'accĂ©der Ă  des sections efficaces neutroniques qui ne pourraient pas ĂȘtre mesurĂ©es directement. La mĂ©thode est basĂ©e sur l'hypothĂšse de formation d'un noyau composĂ© et sur le fait que la dĂ©sexcitation ne dĂ©pend essentiellement que de l'Ă©nergie d'excitation et du spin et paritĂ© de l'Ă©tat composĂ© peuplĂ©. Toutefois, les distributions de moments angulaires et paritĂ©s peuplĂ©s dans des rĂ©actions de transfert et celles induites par neutrons sont susceptibles d'ĂȘtre diffĂ©rentes. Ce travail fait l'Ă©tat de l'art sur la mĂ©thode substitution et sa validitĂ©. En gĂ©nĂ©ral, la mĂ©thode de substitution fonctionne trĂšs bien pour extraire des sections efficaces de fission. Par contre, la mĂ©thode de substitution dĂ©diĂ©e Ă  la capture radiative est mise Ă  mal par la comparaison aux rĂ©actions induites par neutrons. Nous avons rĂ©alisĂ© une expĂ©rience afin de dĂ©terminer les probabilitĂ©s de dĂ©sexcitation gamma du 176Lu et du 173Yb Ă  partir des rĂ©actions de substitution 174Yb(3He,p)176Lu* et 174Yb(3He,alpha)173Yb*, respectivement, et nous les avons comparĂ©es avec les probabilitĂ©s de capture radiative correspondantes aux rĂ©actions 175Lu(n,gamma) et 172Yb(n,gamma) qui sont bien connues. Cette expĂ©rience a permis de comprendre pourquoi, dans le cas de la dĂ©sexcitation gamma, la mĂ©thode de substitution donne des Ă©carts importants par rapport Ă  la rĂ©action neutronique correspondante. Ce travail dans la rĂ©gion de terres rares a permis d'Ă©valuer dans quelle mesure la mĂ©thode de substitution peut s'appliquer pour extraire des probabilitĂ©s de capture dans la rĂ©gion des actinides. Des expĂ©riences prĂ©cĂ©dentes sur la fission ont aussi pu ĂȘtre rĂ©interprĂ©tĂ©es. Ce travail apporte donc un Ă©clairage nouveau sur la mĂ©thode de substitution.Neutron-induced cross sections of short-lived nuclei are needed for fundamental and applied physics as nuclear energy or astrophysics. However, very often the high radioactivity of the samples makes the direct measurement of these cross sections extremely difficult. The surrogate reaction method is an indirect way of determining neutron-induced cross sections through transfer or inelastic scattering reactions. This method presents the advantage that in some cases the target material is stable or less radioactive than the material required for a neutron-induced measurement. The method is based on the hypothesis that the excited nucleus is a compound nucleus whose decay depends essentially on its excitation energy and on the spin and parity state of the populated compound state. Nevertheless, the spin and parity population differences between the compound-nuclei produced in the neutron and transfer-induced reactions may be different. This work reviews the surrogate method and its validity. Neutron-induced fission cross sections obtained with the surrogate method are in general good agreement. However, it is not yet clear to what extent the surrogate method can be applied to infer radiative capture cross sections. We performed an experiment to determine the gamma-decay probabilities for 176Lu and 173Yb by using the surrogate reactions 174Yb(3He,p)176Lu* and 174Yb(3He,alpha)173Yb*, respectively, and compare them with the well-known corresponding probabilities obtained in the 175Lu(n,gamma) and 172Yb(n,gamma) reactions. This experiment provides answers to understand why, in the case of gamma-decay, the surrogate method gives significant deviations compared to the corresponding neutron-induced reaction. In this work, we have also assessed whether the surrogate method can be applied to extract capture probabilities in the actinide region. Previous experiments on fission have also been reinterpreted. Thus, this work provides new insights into the surrogate method

    Neutron-induced cross-sections via the surrogate method

    No full text
    Les sections efficaces neutroniques des noyaux de courte durĂ©e de vie sont des donnĂ©es cruciales pour la physique fondamentale et appliquĂ©e dans des domaines tels que la physique des rĂ©acteurs ou l’astrophysique nuclĂ©aire. En gĂ©nĂ©ral, l’extrĂȘme radioactivitĂ© de ces noyaux ne nous permet pas de procĂ©der Ă  des mesures induites par neutrons. Cependant, il existe une mĂ©thode de substitution (« surrogate » dans la littĂ©rature) qui permet de dĂ©terminer ces sections efficaces neutroniques par l’intermĂ©diaire de rĂ©actions de transfert ou de rĂ©actions de diffusion inĂ©lastique. Son intĂ©rĂȘt principal est de pouvoir utiliser des cibles moins radioactives et ainsi d’accĂ©der Ă  des sections efficaces neutroniques qui ne pourraient pas ĂȘtre mesurĂ©es directement. La mĂ©thode est basĂ©e sur l’hypothĂšse de formation d’un noyau composĂ© et sur le fait que la dĂ©sexcitation ne dĂ©pend essentiellement que de l’énergie d’excitation et du spin et paritĂ© de l'Ă©tat composĂ© peuplĂ©. Toutefois, les distributions de moments angulaires et paritĂ©s peuplĂ©s dans des rĂ©actions de transfert et celles induites par neutrons sont susceptibles d’ĂȘtre diffĂ©rentes. Ce travail fait l’état de l’art sur la mĂ©thode substitution et sa validitĂ©. En gĂ©nĂ©ral, la mĂ©thode de substitution fonctionne trĂšs bien pour extraire des sections efficaces de fission. Par contre, la mĂ©thode de substitution dĂ©diĂ©e Ă  la capture radiative est mise Ă  mal par la comparaison aux rĂ©actions induites par neutrons. Nous avons rĂ©alisĂ© une expĂ©rience afin de dĂ©terminer les probabilitĂ©s de dĂ©sexcitation gamma du 176Lu et du 173Yb Ă  partir des rĂ©actions de substitution 174Yb(3He,p)176Lu* et 174Yb(3He,alpha)173Yb*, respectivement, et nous les avons comparĂ©es avec les probabilitĂ©s de capture radiative correspondantes aux rĂ©actions 175Lu(n,gamma) et 172Yb(n,gamma) qui sont bien connues. Cette expĂ©rience a permis de comprendre pourquoi, dans le cas de la dĂ©sexcitation gamma, la mĂ©thode de substitution donne des Ă©carts importants par rapport Ă  la rĂ©action neutronique correspondante. Ce travail dans la rĂ©gion de terres rares a permis d'Ă©valuer dans quelle mesure la mĂ©thode de substitution peut s’appliquer pour extraire des probabilitĂ©s de capture dans la rĂ©gion des actinides. Des expĂ©riences prĂ©cĂ©dentes sur la fission ont aussi pu ĂȘtre rĂ©interprĂ©tĂ©es. Ce travail apporte donc un Ă©clairage nouveau sur la mĂ©thode de substitution.Neutron-induced cross sections of short-lived nuclei are needed for fundamental and applied physics as nuclear energy or astrophysics. However, very often the high radioactivity of the samples makes the direct measurement of these cross sections extremely difficult. The surrogate reaction method is an indirect way of determining neutron-induced cross sections through transfer or inelastic scattering reactions. This method presents the advantage that in some cases the target material is stable or less radioactive than the material required for a neutron-induced measurement. The method is based on the hypothesis that the excited nucleus is a compound nucleus whose decay depends essentially on its excitation energy and on the spin and parity state of the populated compound state. Nevertheless, the spin and parity population differences between the compound-nuclei produced in the neutron and transfer-induced reactions may be different. This work reviews the surrogate method and its validity. Neutron-induced fission cross sections obtained with the surrogate method are in general good agreement. However, it is not yet clear to what extent the surrogate method can be applied to infer radiative capture cross sections. We performed an experiment to determine the gamma-decay probabilities for 176Lu and 173Yb by using the surrogate reactions 174Yb(3He,p)176Lu* and 174Yb(3He,alpha)173Yb*, respectively, and compare them with the well-known corresponding probabilities obtained in the 175Lu(n,gamma) and 172Yb(n,gamma) reactions. This experiment provides answers to understand why, in the case of gamma-decay, the surrogate method gives significant deviations compared to the corresponding neutron-induced reaction. In this work, we have also assessed whether the surrogate method can be applied to extract capture probabilities in the actinide region. Previous experiments on fission have also been reinterpreted. Thus, this work provides new insights into the surrogate method

    Sections efficaces neutroniques via la méthode de substitution

    No full text
    Neutron-induced cross sections of short-lived nuclei are needed for fundamental and applied physics as nuclear energy or astrophysics. However, very often the high radioactivity of the samples makes the direct measurement of these cross sections extremely difficult. The surrogate reaction method is an indirect way of determining neutron-induced cross sections through transfer or inelastic scattering reactions. This method presents the advantage that in some cases the target material is stable or less radioactive than the material required for a neutron-induced measurement. The method is based on the hypothesis that the excited nucleus is a compound nucleus whose decay depends essentially on its excitation energy and on the spin and parity state of the populated compound state. Nevertheless, the spin and parity population differences between the compound-nuclei produced in the neutron and transfer-induced reactions may be different. This work reviews the surrogate method and its validity. Neutron-induced fission cross sections obtained with the surrogate method are in general good agreement. However, it is not yet clear to what extent the surrogate method can be applied to infer radiative capture cross sections. We performed an experiment to determine the gamma-decay probabilities for 176Lu and 173Yb by using the surrogate reactions 174Yb(3He,p)176Lu* and 174Yb(3He,alpha)173Yb*, respectively, and compare them with the well-known corresponding probabilities obtained in the 175Lu(n,gamma) and 172Yb(n,gamma) reactions. This experiment provides answers to understand why, in the case of gamma-decay, the surrogate method gives significant deviations compared to the corresponding neutron-induced reaction. In this work, we have also assessed whether the surrogate method can be applied to extract capture probabilities in the actinide region. Previous experiments on fission have also been reinterpreted. Thus, this work provides new insights into the surrogate method.Les sections efficaces neutroniques des noyaux de courte durĂ©e de vie sont des donnĂ©es cruciales pour la physique fondamentale et appliquĂ©e dans des domaines tels que la physique des rĂ©acteurs ou l'astrophysique nuclĂ©aire. En gĂ©nĂ©ral, l'extrĂȘme radioactivitĂ© de ces noyaux ne nous permet pas de procĂ©der Ă  des mesures induites par neutrons. Cependant, il existe une mĂ©thode de substitution (" surrogate " dans la littĂ©rature) qui permet de dĂ©terminer ces sections efficaces neutroniques par l'intermĂ©diaire de rĂ©actions de transfert ou de rĂ©actions de diffusion inĂ©lastique. Son intĂ©rĂȘt principal est de pouvoir utiliser des cibles moins radioactives et ainsi d'accĂ©der Ă  des sections efficaces neutroniques qui ne pourraient pas ĂȘtre mesurĂ©es directement. La mĂ©thode est basĂ©e sur l'hypothĂšse de formation d'un noyau composĂ© et sur le fait que la dĂ©sexcitation ne dĂ©pend essentiellement que de l'Ă©nergie d'excitation et du spin et paritĂ© de l'Ă©tat composĂ© peuplĂ©. Toutefois, les distributions de moments angulaires et paritĂ©s peuplĂ©s dans des rĂ©actions de transfert et celles induites par neutrons sont susceptibles d'ĂȘtre diffĂ©rentes. Ce travail fait l'Ă©tat de l'art sur la mĂ©thode substitution et sa validitĂ©. En gĂ©nĂ©ral, la mĂ©thode de substitution fonctionne trĂšs bien pour extraire des sections efficaces de fission. Par contre, la mĂ©thode de substitution dĂ©diĂ©e Ă  la capture radiative est mise Ă  mal par la comparaison aux rĂ©actions induites par neutrons. Nous avons rĂ©alisĂ© une expĂ©rience afin de dĂ©terminer les probabilitĂ©s de dĂ©sexcitation gamma du 176Lu et du 173Yb Ă  partir des rĂ©actions de substitution 174Yb(3He,p)176Lu* et 174Yb(3He,alpha)173Yb*, respectivement, et nous les avons comparĂ©es avec les probabilitĂ©s de capture radiative correspondantes aux rĂ©actions 175Lu(n,gamma) et 172Yb(n,gamma) qui sont bien connues. Cette expĂ©rience a permis de comprendre pourquoi, dans le cas de la dĂ©sexcitation gamma, la mĂ©thode de substitution donne des Ă©carts importants par rapport Ă  la rĂ©action neutronique correspondante. Ce travail dans la rĂ©gion de terres rares a permis d'Ă©valuer dans quelle mesure la mĂ©thode de substitution peut s'appliquer pour extraire des probabilitĂ©s de capture dans la rĂ©gion des actinides. Des expĂ©riences prĂ©cĂ©dentes sur la fission ont aussi pu ĂȘtre rĂ©interprĂ©tĂ©es. Ce travail apporte donc un Ă©clairage nouveau sur la mĂ©thode de substitution

    Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments

    No full text
    There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39

    Directional Track Selection Technique in CR39 SSNTD for lowyield reaction experiments

    No full text
    There is a great interest in the study of p-11B aneutronic nuclear fusion reactions, both for energy production and for determination of fusion cross-sections at low energies. In this context we performed experiments at CELIA in which energetic protons, accelerated by the laser ECLIPSE, were directed toward a solid Boron target. Because of the small cross-sections at these energies the number of expected reactions is low. CR39 Solid-State Nuclear Track Detectors (SSNTD) were used to detect the alpha particles produced. Because of the low expected yield, it is difficult to discriminate the tracks due to true fusion products from those due to natural background in the CR39. To this purpose we developed a methodology of particle recognition according to their direction with respect to the detector normal, able to determine the position of their source. We applied this to the specific experiment geometry, so to select from all the tracks those due to particles coming from the region of interaction between accelerated protons and solid boron target. This technique can be of great help on the analysis of SSNTD in experiments with low yield reactions, but can be also generally applied to any experiment where particles reach the track detector with known directions, and for example to improve the detection limit of particle spectrometers using CR39

    SEPAGE: a proton-ion-electron spectrometer for LMJ-PETAL

    No full text
    International audienceThe SEPAGE spectrometer (SpectromĂštre Electrons Protons A Grandes Energies) was realized within the PETAL+ project funded by the French ANR (French National Agency for Research). This plasma diagnostic, installed on the LMJ-PETAL laser facility, is dedicated to the measurement of charged particle energy spectra generated by experiments using PETAL (PETawatt Aquitaine Laser). SEPAGE is inserted inside the 10-meter diameter LMJ experimental chamber with a SID (Diagnostic Insertion System) in order to be close enough to the target. It is composed of two Thomson Parabola measuring ion spectra and more particularly proton spectra ranging from 0.1 to 20 MeV and from 8 to 200 MeV for the low and high energy channels respectively. The electron spectrum is also measured with an energy range between 0.1 and 150 MeV. The front part of the diagnostic carries a film stack that can be placed as close as 100 mm from the target center chamber. This stack allows a spatial and spectral characterization of the entire proton beam. It can also be used to realize proton radiographies

    Studies on fission with ALADIN - Precise and simultaneous measurement of fission yields, total kinetic energy and total promptneutron multiplicity at GSI

    No full text
    Topical Collection : Perspectives on Nuclear Data for the Next DecadeInternational audienceA novel technique for fission studies, based on the inverse kinematics approach, is presented. Following pioneering work in the nineties, the SOFIA Collaboration has designed and built an experimental set-up dedicated to the simultaneous measurement of isotopic yields, total kinetic energies and total prompt neutron multiplicities, by fully identifying both fission fragments in coincidence, for the very first time. This experiment, performed at GSI, permits to study the fission of a wide variety of fissioning systems, ranging from mercury to neptunium, possibly far from the valley of stability. A first experiment, performed in 2012, has provided a large array of unprecedented data regarding the nuclear fission process. An excerpt of the results is presented. With this solid starter, further improvements of the experimental set-up are considered, which are consistent with the expected developments at the GSI facility, in order to measure more fission observables in coincidence. The completeness reached in the SOFIA data, permits to scrutinize the correlations between the interesting features of fission, offering a very detailed insight in this still unraveled mechanism
    corecore