383 research outputs found

    From Nash to Cournot-Nash equilibria via the Monge-Kantorovich problem

    Get PDF
    The notion of Nash equilibria plays a key role in the analysis of strategic interactions in the framework of NN player games. Analysis of Nash equilibria is however a complex issue when the number of players is large. In this article we emphasize the role of optimal transport theory in: 1) the passage from Nash to Cournot-Nash equilibria as the number of players tends to infinity, 2) the analysis of Cournot-Nash equilibria

    Remarks on existence and uniqueness of Cournot-Nash equilibria in the non-potential case

    Get PDF
    This article is devoted to various methods (optimal transport, fixed-point, ordinary differential equations) to obtain existence and/or uniqueness of Cournot-Nash equilibria for games with a continuum of players with both attractive and repulsive effects. We mainly address separable situations but for which the game does not have a potential. We also present several numerical simulations which illustrate the applicability of our approach to compute Cournot-Nash equilibria

    Higher-order spin effects in the dynamics of compact binaries II. Radiation field

    Get PDF
    Motivated by the search for gravitational waves emitted by binary black holes, we investigate the gravitational radiation field of point particles with spins within the framework of the multipolar-post-Newtonian wave generation formalism. We compute: (i) the spin-orbit (SO) coupling effects in the binary's mass and current quadrupole moments one post-Newtonian (1PN) order beyond the dominant effect, (ii) the SO contributions in the gravitational-wave energy flux and (iii) the secular evolution of the binary's orbital phase up to 2.5PN order. Crucial ingredients for obtaining the 2.5PN contribution in the orbital phase are the binary's energy and the spin precession equations, derived in paper I of this series. These results provide more accurate gravitational-wave templates to be used in the data analysis of rapidly rotating Kerr-type black-hole binaries with the ground-based detectors LIGO, Virgo, GEO 600 and TAMA300, and the space-based detector LISA.Comment: includes the correction of an erratum to be published in Phys. Rev.

    Gravitational-wave tail effects to quartic non-linear order

    Full text link
    Gravitational-wave tails are due to the backscattering of linear waves onto the space-time curvature generated by the total mass of the matter source. The dominant tails correspond to quadratic non-linear interactions and arise at the one-and-a-half post-Newtonian (1.5PN) order in the gravitational waveform. The "tails-of-tails", which are cubic non-linear effects appearing at the 3PN order in the waveform, are also known. We derive here higher non-linear tail effects, namely those associated with quartic non-linear interactions or "tails-of-tails-of-tails", which are shown to arise at the 4.5PN order. As an application, we obtain at that order the complete coefficient in the total gravitational-wave energy flux of compact binary systems moving on circular orbits. Our result perfectly agrees with black-hole perturbation calculations in the limit of extreme mass ratio of the two compact objects.Comment: 32 pages, no figure, matches with published versio

    Third post-Newtonian spin-orbit effect in the gravitational radiation flux of compact binaries

    Full text link
    Gravitational waves contain tail effects that are due to the backscattering of linear waves in the curved space-time geometry around the source. The knowledge as well as the accuracy of the two-body inspiraling post-Newtonian (PN) dynamics and of the gravitational-wave signal has been recently improved, notably by computing the spin-orbit (SO) terms induced by tail effects in the gravitational-wave energy flux at the 3PN order. Here we sketch this derivation, which yields the phasing formula including SO tail effects through the same 3PN order. Those results can be employed to improve the accuracy of analytical templates aimed at describing the whole process of inspiral, merger, and ringdown.Comment: 6 pages; proceeding of the 9th LISA Symposium, Pari

    On the structure of the post-Newtonian expansion in general relativity

    Full text link
    In the continuation of a preceding work, we derive a new expression for the metric in the near zone of an isolated matter system in post-Newtonian approximations of general relativity. The post-Newtonian metric, a solution of the field equations in harmonic coordinates, is formally valid up to any order, and is cast in the form of a particular solution of the wave equation, plus a specific homogeneous solution which ensures the asymptotic matching to the multipolar expansion of the gravitational field in the exterior of the system. The new form provides some insights on the structure of the post-Newtonian expansion in general relativity and the gravitational radiation reaction terms therein.Comment: 22 pages, to appear in Phys. Rev.

    High-order half-integral conservative post-Newtonian coefficients in the redshift factor of black hole binaries

    Full text link
    The post-Newtonian approximation is still the most widely used approach to obtaining explicit solutions in general relativity, especially for the relativistic two-body problem with arbitrary mass ratio. Within many of its applications, it is often required to use a regularization procedure. Though frequently misunderstood, the regularization is essential for waveform generation without reference to the internal structure of orbiting bodies. In recent years, direct comparison with the self-force approach, constructed specifically for highly relativistic particles in the extreme mass ratio limit, has enabled preliminary confirmation of the foundations of both computational methods, including their very independent regularization procedures, with high numerical precision. In this paper, we build upon earlier work to carry this comparison still further, by examining next-to-next-to-leading order contributions beyond the half integral 5.5PN conservative effect, which arise from terms to cubic and higher orders in the metric and its multipole moments, thus extending scrutiny of the post-Newtonian methods to one of the highest orders yet achieved. We do this by explicitly constructing tail-of-tail terms at 6.5PN and 7.5PN order, computing the redshift factor for compact binaries in the small mass ratio limit, and comparing directly with numerically and analytically computed terms in the self-force approach, obtained using solutions for metric perturbations in the Schwarzschild space-time, and a combination of exact series representations possibly with more typical PN expansions. While self-force results may be relativistic but with restricted mass ratio, our methods, valid primarily in the weak-field slowly-moving regime, are nevertheless in principle applicable for arbitrary mass ratios.Comment: 33 pages, no figure; minor correction

    Half-integral conservative post-Newtonian approximations in the redshift factor of black hole binaries

    Full text link
    Recent perturbative self-force computations (Shah, Friedman & Whiting, submitted to Phys. Rev. {\bf D}, arXiv:1312.1952 [gr-qc]), both numerical and analytical, have determined that half-integral post-Newtonian terms arise in the conservative dynamics of black-hole binaries moving on exactly circular orbits. We look at the possible origin of these terms within the post-Newtonian approximation, find that they essentially originate from non-linear "tail-of-tail" integrals and show that, as demonstrated in the previous paper, their first occurrence is at the 5.5PN order. The post-Newtonian method we use is based on a multipolar-post-Minkowskian treatment of the field outside a general matter source, which is re-expanded in the near zone and extended inside the source thanks to a matching argument. Applying the formula obtained for generic sources to compact binaries, we obtain the redshift factor of circular black hole binaries (without spins) at 5.5PN order in the extreme mass ratio limit. Our result fully agrees with the determination of the 5.5PN coefficient by means of perturbative self-force computations reported in the previously cited paper.Comment: 18 pages, no figures, references updated and minor corrections include

    On the equations of motion of point-particle binaries at the third post-Newtonian order

    Full text link
    We investigate the dynamics of two point-like particles through the third post-Newtonian (3PN) approximation of general relativity. The infinite self-field of each point-mass is regularized by means of Hadamard's concept of ``partie finie''. Distributional forms associated with the regularization are used systematically in the computation. We determine the stress-energy tensor of point-like particles compatible with the previous regularization. The Einstein field equations in harmonic coordinates are iterated to the 3PN order. The 3PN equations of motion are Lorentz-invariant and admit a conserved energy (neglecting the 2.5PN radiation reaction). They depend on an undetermined coefficient, in agreement with an earlier result of Jaranowski and Schaefer. This suggests an incompleteness of the formalism (in this stage of development) at the 3PN order. In this paper we present the equations of motion in the center-of-mass frame and in the case of circular orbits.Comment: 12 pages, to appear in Physics Letters A, minor changes include
    • 

    corecore